精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=$\frac{3}{2}$an+n-3成立.
(1)求证:存在实数λ使得数列{an+λ}为等比数列;
(2)求数列{nan}的前n项和Tn

分析 (1)利用递推关系与等比数列的定义通项公式即可得出.
(2)利用“错位相减法”、等差数列与等比数列的求和公式即可得出.

解答 (1)证明:∵Sn=$\frac{3}{2}$an+n-3,∴a1=S1=$\frac{3}{2}{a}_{1}$+1-3,解得a1=4.
n≥2时,an=Sn-Sn-1=$\frac{3}{2}$an+n-3-$(\frac{3}{2}{a}_{n-1}+n-1-3)$,化为an=3an-1+2,
变形为:an+1=3(an-1+1),
因此取λ=1,则数列{an+1}为等比数列,首项为5,公比为3.
(2)由(1)可得:an+1=5×3n-1,可得an=5×3n-1-1,
∴nan=5n×3n-1-n.
数列{nan}的前n项和Tn=5(1+2×3+3×32+…+n×3n-1)-$\frac{n(n+1)}{2}$.
设An=1+2×3+3×32+…+n×3n-1
∴3An=3+2×32+…+(n-1)×3n-1+n×3n
-2An=1+3+32+…+3n-1-n×3n=$\frac{{3}^{n}-1}{3-1}$-n×3n
∴An=$\frac{(2n-1)×{3}^{n}+1}{4}$.
∴Tn=$\frac{5(2n-1)×{3}^{n}+5}{4}$-$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”、递推公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.(3x+1)n展开式中,所有项的系数和比二项式系数和多240,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={-2,-1,3,4},B={-1,2,3},则A∪B={-2,-1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=2sin2x+$\sqrt{3}$sin2($\frac{π}{2}$-x).
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期及图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线ax+(2-a)y+4=0与x+ay-2=0平行,则实数a的值为(  )
A.1B.-2C.1或-2D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.目前,中国的青少年视力水平下降已引起全社会的关注,为了调查了解某中学高三年级1 500名学生的视力情况,从中抽测了一部分学生的视力,
分  组频  数频  率
3.95~4.2520.04
60.12
4.55~4.8523
4.85~5.15
5.15~5.4510.02
合计1.00
整理数据后,分析数据如下:
(1)填写频率分布表中未完成的部分;
(2)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3x及曲线y=f(x)上一点P(1,-2),
(I) 求与y=f(x)相切且以P为切点的直线方程;
(Ⅱ)求过点P并与y=f(x)相切且切点异于P点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在区间[-1,1]上的奇函数,且f(-1)=1,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$<0.
(Ⅰ)证明:f(x)在区间[-1,1]上是单调减函数;
(Ⅱ)解不等式f(x+$\frac{1}{2}}$)<f(${\frac{1}{x-1}}$);
(Ⅲ)若f(x)≤t2-mt-1对所有x∈[-1,1],m∈[0,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=sin(2x+φ)(0<φ<π)的图象向右平移$\frac{π}{4}$个单位后与y=sin2x的图象重合,则φ=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案