精英家教网 > 高中数学 > 题目详情
13.设命题$p:?{x_0}∈R,{2^{x_0}}≤0$,则?p是(  )
A.$?{x_0}∈R,{2^{x_0}}≤0$B.$?{x_0}∈R,{2^{x_0}}>0$C.$?{x_0}∈R,{2^{x_0}}>0$D.$?{x_0}∈R,{2^{x_0}}≥0$

分析 根据特称命题的否定是全称命题进行求解即可.

解答 解:命题是特称命题,则命题的否定是全称命题,
即$?{x_0}∈R,{2^{x_0}}>0$,
故选:C

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.
时间t(天) 0 510 15 20 25 30 
 日销售量y1(万件) 025 40 45 40 25 0
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:?x∈R,2x>0,则¬p为(  )
A.?x∈R,2x<0B.?x∈R,2x<0C.?x0∈R,2${\;}^{{x}_{0}}$≤0D.?3x0∈R,2${\;}^{{x}_{0}}$<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(3)=1.
(Ⅰ)求不等式f(x)>f(x-1)+2的解集;
(Ⅱ)设a<b,比较f($\frac{{e}^{a}+{e}^{b}}{2}$)与f($\frac{{e}^{b}-{e}^{a}}{b-a}$)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非空集合P满足:①P⊆{1,2,3,4,5};②若a∈P,则6-a∈P,符合上述条件的集合P的个数是(  )
A.4B.5C.7D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有$f(x)>0,f(x+2)=\frac{1}{f(x)}$.则f(2015)=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={-1,5,1},A的子集中,含有元素5的子集共有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义域为R的函数$f(x)=\frac{{a-{2^x}}}{{b+{2^x}}}$是奇函数
(1)求a,b的值.
(2)判断f(x)的单调性,并用定义证明
(3)若存在t∈R,使f(k+t2)+f(4t-2t2)<0成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
时间x12345
命中率y0.40.50.60.60.4
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.

查看答案和解析>>

同步练习册答案