精英家教网 > 高中数学 > 题目详情
20.抛物线y=$\frac{1}{2}$x2的焦点坐标是(  )
A.(0,$\frac{1}{8}$)B.(-$\frac{1}{8}$,0)C.(-$\frac{1}{2}$,0)D.(0,$\frac{1}{2}$)

分析 先把方程化为标准方程,可知焦点在y轴上,进一步可以确定焦点坐标.

解答 解:化为标准方程为x2=2y,∴2p=2,∴$\frac{p}{2}$=$\frac{1}{2}$,
∴焦点坐标是(0,$\frac{1}{2}$).
故选:D.

点评 本题主要考查抛物线的几何形状,关键是把方程化为标准方程,再作研究.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{16π}{9}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上一点A(2,$\sqrt{2}$),点B是椭圆上任意一点(异于点A),过点B作与直线OA平行的直线l交椭圆于点C,当直线AB、AC斜率都存在时,kAB+kAC=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.渐近线方程为y=±2x,一个焦点的坐标为($\sqrt{10}$,0)的双曲线标准方程为$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{8}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=$\left\{\begin{array}{l}{3x+2850,0≤x≤50}\\{-3x+3150,x>50}\end{array}\right.$.
(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?
(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;
(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则其体积为(  )
A.$\frac{4}{3}π$B.$\frac{8}{3}π$C.$\frac{16}{3}π$D.$\frac{32}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\sqrt{2x-5}$的定义域为A,B={x|x2≥a2}.
(1)若a=2,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个如图所示的密闭容器,它的下部是一个底面半径为1m,高为2m的圆锥体,上半部是个半球,则这个密闭容器的表面积是多少?体积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:
参加纪念活动的环节数0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求参加纪念活动环节数为2的抗战老兵中抽取的人数;
(Ⅱ)某医疗部门决定从(1)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.

查看答案和解析>>

同步练习册答案