精英家教网 > 高中数学 > 题目详情
4.直线l过点P(2,1),且倾斜角为$\frac{π}{4}$,曲线C:$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)写出直线l的参数方程的标准形式,并求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,求|AB|.

分析 (1)直线l过点P(2,1),且倾斜角为$\frac{π}{4}$,可得参数方程;曲线C:$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),利用平方关系可得普通方程.
(2)把直线l的参数方程代入曲线C的方程可得:3t2+8$\sqrt{2}$t-4=0,可得|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.

解答 解:(1)直线l过点P(2,1),且倾斜角为$\frac{π}{4}$,可得参数方程:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,
曲线C:$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),利用平方关系可得普通方程:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)把直线l的参数方程代入曲线C的方程可得:3t2+8$\sqrt{2}$t-4=0,
∴t1+t2=-$\frac{8\sqrt{2}}{3}$,t1t2=$-\frac{4}{3}$.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{\frac{64×2}{9}-4×(-\frac{4}{3})}$=$\frac{4\sqrt{11}}{3}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、参数方程的应用、弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知{an}是等差数列,其中a1=25,a4=16.
(1)求数列{an}的通项公式;
(2)当n为何值时,数列{an}的前n项和Sn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有7名世博会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2通晓俄语,C1、C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.已知每个志愿者被选中的机会均等.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求B1和C1至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线y=e-5x+2在点(0,3)处的切线方程为y=-5x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,∠C=90°,a=1,b=3,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量ξ服从正态分布N(4,3),若P(ξ<a-5)=P(ξ>a+1),则实数a等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,$A{B_1}=\sqrt{3}$.
(1)求证:平面AB1C⊥平面B1CB;
(2)求三棱锥A1-AB1C的体积.
(3)若点M为线段CC1上的一动点,则当AM+MB1和最小时,求A1到平面AB1M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sinx}{x}$在(0,$\frac{π}{2}$)上是减函数,若0<x<1,a=($\frac{sinx}{x}$)2,b=$\frac{sinx}{x}$,c=$\frac{sin{x}^{2}}{{x}^{2}}$,则a,b,c的大小关系为a<b<c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等比数列{an}的公比为q,其前n项之和为Sn,前n项之积为Tn,并且满足条件:a1>1,a2016a2017>1,$\frac{{a}_{2016}-1}{{a}_{2017}-1}$<0,下列结论中正确的是(  )
A.q<0B.a2016a2018-1>0
C.T2016是数列{Tn}中的最大项D.S2016>S2017

查看答案和解析>>

同步练习册答案