精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
某旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团从中任选一条。
(I)求3个旅游团选择3条不同的旅游线路的概率;
(II)求恰有2条旅游线路没有被选择的概率;
(III)求选择甲旅游线路的旅游团数的分布列及数学期望。
.解:(1)3个旅游团选择3条不同线路的概率为:       3分
(2)恰有两条线路没有被选择的概率为:          6分
(3)设选择甲线路旅游团数为,则                         7分
                          9分
的分布列为:

0
1
2
3
P




∴期望                       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共10分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:
①至少有1人面试合格的概率;
②签约人ξ的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把一根长度为8的铁丝截成3段。
(1)     若三段的长度均为整数,求三段的长度能构成三角形的概率;
(2)     若把铁丝截成2,2,4的三段放入一盒子中,然后有放回地摸4次,设摸到长度为2的铁丝的次数为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.
(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)    设随机变量X的概率分布为 (k=1,2,3,4):
(Ⅰ)确定常数的值;
(Ⅱ)写出的分布列;
(Ⅲ)计算的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分).从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.
(1)求的分布列;
(2)求的数学期望;
(3)求“所选3人中女生人数”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立。该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
一个口袋巾装有标号为1,2,3的6个小球,其中标号1的小球有1个,标号2的小球有2个,标号3的小球有3个,现从口袋中随机摸出2个小球.
(I)求摸出2个小球标号之和为3的概率;
(II)求摸出2个小球标号之和为偶数的概率;
(III)用表示摸出2个小球的标号之和,写出的分布列,并求的数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

随机变量的分布列如下:








 
其中成等差数列,若,则的值是         ;

查看答案和解析>>

同步练习册答案