【题目】[选修4—5:不等式选讲]
已知.
(1)若的解集为,求的值;
(2)若不等式恒成立,求实数的范围.
【答案】(1) ;(2).
【解析】试题分析:(1)若化为,可得3,-1是方程 的两根,根据韦达定理可得结果;(2),要不等式恒成立只需,解绝对值不等式即可得结果.
试题解析: 即,平方整理得: ,
所以-3,-1是方程 的两根,
由根与系数的关系得到
,
解得.
(2)因为
所以要不等式恒成立只需
当时, 解得
当时, 此时满足条件的不存在
综上可得实数的范围是.
【方法点晴】本题主要考查绝对值不等式的解法、绝对值不等式求最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立()或恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题(2)是利用方法 ① 求得的范围的.
科目:高中数学 来源: 题型:
【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里;在A处看灯塔C在货轮的北偏西30°,距离为8海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4—4:坐标系与参数方程】
将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线与C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=x2﹣ax+b,其图象对称轴为直线x=2,且g(x)的最小值为﹣1,设f(x)= .
(1)求实数a,b的值;
(2)若不等式f(3x)﹣t3x≥0在x∈[﹣2,2]上恒成立,求实数t的取值范围;
(3)若关于x的方程f(|2x﹣2|)+k ﹣3k=0有三个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,☉O内切于△ABC的边于点D,E,F,AB=AC,连接AD交☉O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在AD上;
(2)求证:CD=CG;
(3)若AH∶AF=3∶4,CG=10,求HF的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①函数y=﹣ 在其定义域上是增函数;
②函数y= 是奇函数;
③函数y=log2(x﹣1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若( )a=( )b<1.则a<b<0
则下列正确命题的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com