精英家教网 > 高中数学 > 题目详情
若a>0,b>0,且
1
a
+
4
b
=2,求ab的最小值.
考点:基本不等式
专题:不等式
分析:由基本不等式得:
1
a
+
4
b
≥2
4
ab
,即2≥2
4
ab
,所以ab≥4,所以ab的最小值为4.
解答: 解:∵a>0,b>0;
∴2=
1
a
+
4
b
≥2
1
a
4
b
=
4
ab

∴ab≥4;
∴ab的最小值为4.
点评:考查基本不等式的运用:a+b≥2
ab
,a>0,b>0
,以及不等式的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合U={1,2,3,4,5},若A∪B=U,A∩B={3,4},且A∩(∁UB)={1,2},试写出满足上述条件的集合A和B.

查看答案和解析>>

科目:高中数学 来源: 题型:

向正三棱柱ABC-A1B1C1的容器中,装入一定量水,然后将面ABB1A1放到一个水平面上,则水的形状是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)(x∈R)
5x+1(x>
1
2
)

(Ⅰ)作出f(x)图象,并求函数f(x)的最小值;
(Ⅱ)解不等式:f(x)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).
(1)求f(x)的解析式;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的坐标分别为A(2,1),B(5,3),C(-1,5),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C过点A(1,1)和B(2,-2),且圆心在l:x-y+1=0上,O为原点,设P为⊙C上的动点,求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列求导是否正确,如果不正确,加以改正.
(1)[(3+x2)(2-x2)]′=2x(2-x2)+3x2(3+x2);
(2)(
1+cosx
x2
)′=
2x(1+cosx)+x2sinx
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-log2x,x∈[1,16],求y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

同步练习册答案