分析 先求函数的定义,求出函数的最大值a和最小值b,代入求极限.
解答 解:y=4-$\sqrt{-{x}^{2}+2x+3}$,定义域为[-1,3]
当x=1时,y取最小值为2,当x=3或-1时,y取最大值为4,
故a=2,b=4;
$\underset{lim}{n→∞}$$\frac{{a}^{n}-2{b}^{n}}{3{a}^{n}-4{b}^{n}}$=$\underset{lim}{n→∞}$$\frac{{2}^{n}-2{•4}^{n}}{3•{2}^{n}-4•{4}^{n}}$=$\underset{lim}{n→∞}\frac{(\frac{1}{2})^{n}-2}{3•(\frac{1}{2})^{n}-4}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查求函数的定义域,根据定义域求函数的最值及求极限,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -1 | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,4} | B. | {-2,-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com