精英家教网 > 高中数学 > 题目详情
14.在△ABC中,角A,B,C所对应的边分别是a,b,c,向量$\overrightarrow{m}$=(a-c,b+c),$\overrightarrow{n}$=(b-c,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求B;
(2)若b=$\sqrt{13}$,cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,求a.

分析 (1)根据向量的平行和余弦定理即可求出B;
(2)根据同角的三角函数的关系以及两角和差的正弦公式和正弦定理即可求出.

解答 解:(1)因为$\overrightarrow{m}$∥$\overrightarrow{n}$,所以a2+c2-b2=ac,(2分)
因为cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,(4分)
因为B∈(0,π)(5分)
所以B=$\frac{π}{3}$.(6分)
(2)因为A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),(7分)
cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,所以sin(A+$\frac{π}{6}$)=$\frac{5\sqrt{13}}{26}$,(9分)
所以sinA=sin[(A+$\frac{π}{6}$)-$\frac{π}{6}$]=$\frac{\sqrt{39}}{26}$,(11分)
在△ABC中,由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$,(13分)
解得a=1.(14分)

点评 本题考查三角函数的恒等变形,本题解题的关键是利用向量之间的关系写出三角函数之间的关系,注意正弦定理,余弦定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设复数z1=2-i,z2=a+2i(i是虚数单位,a∈R),若x1x2∈R,则a等于(  )
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若向量$\overrightarrow{a}$=($\sqrt{3}$sinωx,sinωx),$\overrightarrow{b}$=(cosωx,sinωx)其中ω>0,记函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$-$\frac{1}{2}$,且函数f(x)的图象相邻两条对称轴之间的距离是$\frac{π}{2}$.
(Ⅰ)求f(x)的表达式及f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,c=$\sqrt{3}$,f(C)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点.PD⊥x轴于点D,记满足$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OD}$)的动点Q的轨迹为C.
(1)求轨迹C的方程;
(2)过原点O的直线l与曲线C交于M,N两点,A(-1,-$\frac{1}{2}$)是一定点,求△MAN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若y=4-$\sqrt{-{x}^{2}+2x+3}$最小值为a,最大值为b,则$\underset{lim}{n→∞}$$\frac{{a}^{n}-2{b}^{n}}{3{a}^{n}-4{b}^{n}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设p:|x-a|>3,q:(x+1)(2x-1)≥0,若¬p是q的充分不必充要条件,则实数a的取值范围是(-∞,-4]∪[$\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),满足f(0)=f($\frac{π}{3}$),且函数在[0,$\frac{π}{2}$]上有且只有一个零点,则f(x)的最小正周期为(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(sin$\frac{π}{2}$)>f(cos$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求cos$\frac{7}{6}$π+sin$\frac{2}{3}$π-cos$\frac{8}{3}$π+sin$\frac{13}{6}$π+cos$\frac{17}{6}$π的值.

查看答案和解析>>

同步练习册答案