精英家教网 > 高中数学 > 题目详情
4.设复数z1=2-i,z2=a+2i(i是虚数单位,a∈R),若x1x2∈R,则a等于(  )
A.1B.-1C.4D.-4

分析 利用复数代数形式的乘法运算化简,再由虚部等于0求得a值.

解答 解:∵z1=2-i,z2=a+2i,
∴z1z2=(2-i)(a+2i)=2a+2+(4-a)i,
又z1z2∈R,
∴4-a=0,即a=4.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角余弦为$\frac{1}{5}$,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角余弦为为-$\frac{1}{3}$,|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$•$\overrightarrow{c}$的值为$\frac{26\sqrt{3}+51}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左焦点为F(-1,0),且椭圆上的点到点F的距离最小值为$\sqrt{2}-1$.
(1)求椭圆的方程;
(2)已知经过点F的动直线l与椭圆交于不同的两点A,B,点$M(-\frac{5}{4},0)$,证明:$\overline{MA}•\overline{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,既是偶函数,又是区间(0,3)内是增函数的是(  )
A.y=log${\;}_{\frac{1}{2}}$|x|B.y=cosxC.y=ex+e-xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为(  )
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=cos(x-$\frac{π}{3}$)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴是直线(  )
A.x=$\frac{π}{3}$B.x=$\frac{π}{8}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,?a∈R,都有f(a)+f(-a)=1成立的是(  )
A.f(x)=ln$\sqrt{1+{x}^{2}}$B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$D.f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设m、n分别为连续两次投掷骰子得到的点数,且向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,-1),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对应的边分别是a,b,c,向量$\overrightarrow{m}$=(a-c,b+c),$\overrightarrow{n}$=(b-c,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求B;
(2)若b=$\sqrt{13}$,cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,求a.

查看答案和解析>>

同步练习册答案