5£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨$\sqrt{3}$sin¦Øx£¬sin¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx£¬sin¦Øx£©ÆäÖЦأ¾0£¬¼Çº¯Êýf£¨x£©=$\overrightarrow{a}$$•\overrightarrow{b}$-$\frac{1}{2}$£¬ÇÒº¯Êýf£¨x£©µÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëÊÇ$\frac{¦Ð}{2}$£®
£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ¼°f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Éè¡÷ABCÈýÄÚ½ÇA¡¢B¡¢CµÄ¶ÔÓ¦±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa+b=3£¬c=$\sqrt{3}$£¬f£¨C£©=1£¬Çó¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÀûÓÃÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㻯¼ò¿ÉµÃº¯Êý½âÎöʽf£¨x£©=sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¬ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬¼´¿ÉµÃ½âº¯Êý½âÎöʽ£¬ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
¼´¿É½âµÃf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬½áºÏ·¶Î§0£¼C£¼¦Ð£¬¿ÉµÃ-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬½âµÃC=$\frac{¦Ð}{3}$£¬½áºÏÒÑÖªÓÉÓàÏÒ¶¨ÀíµÃabµÄÖµ£¬ÓÉÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£©¡ß$\overrightarrow{a}$=£¨$\sqrt{3}$sin¦Øx£¬sin¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx£¬sin¦Øx£©£¬
¡à$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sin¦Øxcos¦Øx+{sin^2}¦Øx-\frac{1}{2}=sin£¨2¦Øx-\frac{¦Ð}{6}£©$£¬¡­£¨3·Ö£©
ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬¹Ê¦Ø=1£¬Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬¡­£¨4·Ö£©
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
µÃk¦Ð-$\frac{¦Ð}{6}$¡Üx¡Ük¦Ð+$\frac{¦Ð}{3}$£¬
¡àf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£º[k¦Ð-$\frac{¦Ð}{6}$£¬k¦Ð+$\frac{¦Ð}{3}$]£¬k¡ÊZ£¬¡­£¨6·Ö£©
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬
¡ß0£¼C£¼¦Ð£¬¡à-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬
¡à2C-$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬½âµÃC=$\frac{¦Ð}{3}$£® ¡­£¨8·Ö£©
ÓÖ¡ßa+b=3£¬$c=\sqrt{3}$£¬ÓÉÓàÏÒ¶¨ÀíµÃc2=a2+b2-2abcos$\frac{¦Ð}{3}$£¬
¡à£¨a+b£©2-3ab=3£¬¼´ab=2£¬
ÓÉÃæ»ý¹«Ê½µÃÈý½ÇÐÎÃæ»ýΪ$\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÔÚ½âÈý½ÇÐÎÖеÄÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄ×ó½¹µãΪF£¨-1£¬0£©£¬ÇÒÍÖÔ²Éϵĵ㵽µãFµÄ¾àÀë×îСֵΪ$\sqrt{2}-1$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÑÖª¾­¹ýµãFµÄ¶¯Ö±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬µã$M£¨-\frac{5}{4}£¬0£©$£¬Ö¤Ã÷£º$\overline{MA}•\overline{MB}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁк¯ÊýÖУ¬?a¡ÊR£¬¶¼ÓÐf£¨a£©+f£¨-a£©=1³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=ln$\sqrt{1+{x}^{2}}$B£®f£¨x£©=cos2£¨x-$\frac{¦Ð}{4}$£©C£®f£¨x£©=$\frac{£¨x-1£©^{2}}{1+{x}^{2}}$D£®f£¨x£©=$\frac{{2}^{x}}{{2}^{x}-1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Éèm¡¢n·Ö±ðΪÁ¬ÐøÁ½´ÎͶÖÀ÷»×ӵõ½µÄµãÊý£¬ÇÒÏòÁ¿$\overrightarrow{a}$=£¨m£¬n£©£¬$\overrightarrow{b}$=£¨1£¬-1£©£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½ÇµÄ¸ÅÂÊÊÇ$\frac{5}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª{an}ΪµÈ±ÈÊýÁУ¬a1=3£¬ÇÒ4a1£¬2a2£¬a3³ÉµÈ²îÊýÁУ¬Ôòa3+a5µÈÓÚ£¨¡¡¡¡£©
A£®189B£®72C£®60D£®33

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÊýÁеÄǰ4ÏîΪ2£¬0£¬2£¬0£¬ÔòÒÀ´Î¹éÄɸÃÊýÁеÄͨÏî²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®an=£¨-1£©n-1+1B£®an=$\left\{\begin{array}{l}{2£¬nÎªÆæÊý}\\{0£¬nΪżÊý}\end{array}\right.$
C£®an=2sin$\frac{n¦Ð}{2}$D£®an=cos£¨n-1£©¦Ð+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¼¯ºÏA={x||x|¡Ü2}£¬B={x|x2-3x¡Ü0£¬x¡ÊN}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{0£¬4}B£®{-2£¬-1£¬0}C£®{-1£¬0£¬1}D£®{0£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔÓ¦µÄ±ß·Ö±ðÊÇa£¬b£¬c£¬ÏòÁ¿$\overrightarrow{m}$=£¨a-c£¬b+c£©£¬$\overrightarrow{n}$=£¨b-c£¬a£©£¬ÇÒ$\overrightarrow{m}$¡Î$\overrightarrow{n}$£®
£¨1£©ÇóB£»
£¨2£©Èôb=$\sqrt{13}$£¬cos£¨A+$\frac{¦Ð}{6}$£©=$\frac{3\sqrt{39}}{26}$£¬Çóa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬ÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬AB=BC=1£¬AA1=2£¬DÊÇACµÄÖе㣬AB¡ÍÆ½ÃæB1C1CB£¬¡ÏBCC1=60¡ã£®
£¨1£©ÇóÖ¤£ºAC¡ÍÆ½ÃæBDC1£»
£¨2£©Çó¶þÃæ½ÇB1-BC1-A1µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸