精英家教网 > 高中数学 > 题目详情
2.已知某几何体的三视图如图所示,则该几何体的体积为$\frac{80}{3}$.

分析 几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.

解答 解:由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为$\frac{1}{2}$×4×4×4=32.
消去的三棱锥的体积为$\frac{1}{3}$×$\frac{1}{2}$×4×2×4=$\frac{16}{3}$,
∴几何体的体积V=32-$\frac{16}{3}$=$\frac{80}{3}$.
故答案为:$\frac{80}{3}$

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知{an}为等差数列,公差为1,且a5是a3与a11的等比中项,则a1=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在(-1,1)上的奇函数,在[0,1)上单调递增,则不等式f(x2)<f(2x)解集为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的各项均为正数且公比大于1,前n项积为Tn,且a2a4=a3,则使得Tn>1的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若α=accsin$\frac{1}{4}$,β=arctan$\frac{\sqrt{5}}{5}$,γ=arccos$\frac{4}{5}$,则α,β,γ的大小关系是γ>β>α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合$A=\{x|{(x-1)^2}≤\frac{3}{2}x-\frac{1}{2},x∈R\}$,B=N,则集合A∩B的真子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设${x^7}+{x^6}={a_0}+{a_1}(x+2)+…+{a_7}{(x+2)^7}$,则a3=400.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=tan(ωx+\frac{π}{4})(ω>0)$的最小正周期为2π,则ω=$\frac{1}{2}$;$f(\frac{π}{3})$=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cos2x+cos2x,求
(1)周期;
(2)当x∈[$\frac{π}{6}$,$\frac{2π}{3}$],求值域.

查看答案和解析>>

同步练习册答案