精英家教网 > 高中数学 > 题目详情
18.若sinx+cosx=k,且sin3x+cos3x<0,那么k取值范围是[-$\sqrt{2}$,0).

分析 对sinx+cosx=k两边平方得sinxcosx=$\frac{{k}^{2}-1}{2}$.使用立方和公式将sin3x+cos3x分解因式得到关于k的不等式.解出k;再利用和角公式k=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)得到k的范围,对不等式取交集即为k的范围.

解答 解:∵sinx+cosx=k,∴sinxcosx=$\frac{{k}^{2}-1}{2}$.
∵sin3x+cos3x<0,∴(sinx+cosx)(sin2x-sinxcosx+cos2x)<0,
即k(1-$\frac{{k}^{2}-1}{2}$)=$\frac{3-{k}^{2}}{2}$k<0.
(1)若k<0,则3-k2>0,解得-$\sqrt{3}$<k<0;
(2)若k>0,则3-k2<0,解得k>$\sqrt{3}$.
又∵k=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),∴-$\sqrt{2}$≤k≤$\sqrt{2}$.
∴k的取值范围是[-$\sqrt{2}$,0).
故答案为[-$\sqrt{2}$,0).

点评 本题考查了同角三角函数的关系,不等式的解法,因式分解得到关于k的不等式是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow{b}$=(2m+1,m-2),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是锐角,则实数m的取值范围是(  )
A.m>2或m<-$\frac{4}{3}$B.-$\frac{4}{3}$<m<2C.m≠2D.m≠2且m≠-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在等腰梯形ABCD中,AB=2,CD=4,BC=$\sqrt{5}$,点E,F分别为AD,BC的中点.如果对于常数λ,在等腰梯形ABCD的四条边长,有且只有8个不同的点P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范围是(  )
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{9}{20}$,$\frac{11}{4}$)C.(-$\frac{9}{20}$,-$\frac{1}{4}$)D.(-$\frac{5}{4}$,$\frac{11}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知常数a>$\frac{1}{2}$,则函数y=x2+|x-a|+1的最小值为(  )
A.a+1B.a+$\frac{3}{4}$C.a2+1D.$\frac{3}{4}$-a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A(0,1),B(-3,4),若∠AOB的平分线交AB于D点,则$\overrightarrow{AD}$=(  )
A.($\frac{1}{2}$,$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.($\frac{1}{2}$,-$\frac{1}{2}$)D.(-$\frac{1}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α的终边在直线y=3x上,求sinα和cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求定积分${∫}_{-1}^{0}$$\frac{{x}^{2}}{{x}^{2}+2x}$dx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$$+2\overrightarrow{b}$)($\overrightarrow{a}-3\overrightarrow{b}$)=-18,求向量$\overrightarrow{a}$的模.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M(2,0)的直线l与椭圆C相交于A,B两点,F1为椭圆的左焦点.
(1)若B点关于x轴的对称点是N,证明:直线AN恒过一定点;
(2)试求椭圆C上是否存在点P,使F1APB为平行四边形?若存在,求出F1APB的面积,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案