分析 (1)解方程求得tanα的值,再利用同角三角函数的基本关系,求得$\frac{2sinα-cosα}{sinα+cosα}$的值.
(2)根据tanα=1,利用同角三角函数的基本关系,求得3sin2α-sinαcosα+2cos2α的值.
解答 解:(1)∵tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角,
∴tanα=1,或tanα=-$\frac{1}{2}$(舍去),∴$\frac{2sinα-cosα}{sinα+cosα}$=$\frac{2tanα-1}{tanα+1}$=$\frac{1}{2}$.
(2)3sin2α-sinαcosα+2cos2α=$\frac{{3sin}^{2}α-sinαcosα+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{3tan}^{2}α-tanα+2}{{tan}^{2}α+1}$=$\frac{3-1+2}{2}$=2.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | ±2 | C. | ±$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
| C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com