精英家教网 > 高中数学 > 题目详情
8.已知tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求3sin2α-sinαcosα+2cos2α的值.

分析 (1)解方程求得tanα的值,再利用同角三角函数的基本关系,求得$\frac{2sinα-cosα}{sinα+cosα}$的值.
(2)根据tanα=1,利用同角三角函数的基本关系,求得3sin2α-sinαcosα+2cos2α的值.

解答 解:(1)∵tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角,
∴tanα=1,或tanα=-$\frac{1}{2}$(舍去),∴$\frac{2sinα-cosα}{sinα+cosα}$=$\frac{2tanα-1}{tanα+1}$=$\frac{1}{2}$.
(2)3sin2α-sinαcosα+2cos2α=$\frac{{3sin}^{2}α-sinαcosα+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{3tan}^{2}α-tanα+2}{{tan}^{2}α+1}$=$\frac{3-1+2}{2}$=2.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若二项式(x-$\frac{a}{x}$)8的展开式中常数项为280,则实数a=(  )
A.2B.±2C.±$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的图象经过点$({0,\frac{1}{2}})$,且相邻两条对称轴的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式及其在[0,π]上的单调递增区间;
(2)在△ABC中,a,b,c分别是A,B,C的对边,若$f({\frac{A}{2}})-cosA=\frac{1}{2}$,bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\int_1^3{f(x)dx=56}$,则(  )
A.$\int_1^2{f(x)dx=28}$B.$\int_2^3{f(x)dx=28}$
C.$\int_1^2{2f(x)dx=56}$D.$\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设i为虚数单位,则$\frac{7+i}{3+4i}$等于(  )
A.1-iB.1+iC.2+iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A,B两点,则直线AB的方程是3x-3y-10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,cos2$\frac{B}{2}$=$\frac{a+2c}{4c}$(a,b,c分别为角A,B,C的对边),则△ABC的形状为(  )
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若(ax+1)5的展开式中x3的系数是80,则实数a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:满足不等式x2-4ax+3a2<0(a<0)的实数x.命题q:满足不等式x2-x-6≤0的实数x,已知q是p的必要非充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案