精英家教网 > 高中数学 > 题目详情
9.已知定义在R上的可导函数f(x)的导函数f'(x),若对于任意实数x,有f'(x)<f(x),且y=f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,e4D.(e4,+∞)

分析 根据条件构造函数令g(x)=$\frac{f(x)}{{e}^{x}}$,由求导公式和法则求出g′(x),根据条件判断出g′(x)的符号,得到函数g(x)的单调性,再由奇函数的结论:f(0)=0求出g(0)的值,将不等式进行转化后,利用g(x)的单调性可求出不等式的解集.

解答 解:由题意令g(x)=$\frac{f(x)}{{e}^{x}}$,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f'(x)<f(x),
∴g′(x)<0,
即g(x)在R上是单调递减函数,
∵y=f(x)-1为奇函数,
∴f(0)-1=0,即f(0)=1,g(0)=1,
则不等式f(x)<ex等价为$\frac{f(x)}{{e}^{x}}$<1=g(0),
即g(x)<g(0),
解得x>0,
∴不等式的解集为(0,+∞),
故选:B.

点评 本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,图中的四边形是边长为2的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{20}{3}$B.6C.$\frac{16}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=2cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)图象的一个对称中心为(2,0),直线x=x1,x=x2是图象的任意两条对称轴,且|x1-x2|的最小值3,且f(1)>f(3)要得到函数f(x)的图象可将函数y=2cosωx的图象(  )
A.向右平移$\frac{1}{2}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{1}{2}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一款底面为正方形的长方体无盖金属容器(忽略其厚度),如图所示,当其容积为500cm3时,问容器的底面边长为多少时,所使用材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(2,3)内为减函数,在区间(5,+∞)为增函数,则实数a的取值范围是(  )
A.[3,4]B.[5,7]C.[4,6]D.[7,8]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一同学在电脑中打出如下若干个圆(图中●表示实圆,○表示空心圆):
●○●●○●●●○●●●●○●●●●●○●●●●●●○
若将此若干个圆依次复制得到一系列圆,那么在前2000个圆中,有61个空心圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的减函数f(x)满足f(x)+f(-x)=0,则不等式f(1-x)<0的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,|x|+cosx≥0”的否定是(  )
A.?x∈R,|x|+cosx<0B.?x∈R,|x|+cosx≤0C.?x∈R,|x|+cosx<0D.?x∈R,|x|+cosx≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上周期为3的奇函数,若tanα=3,则f(2015sin2α)=(  )
A.-1B.0C.1D.2016

查看答案和解析>>

同步练习册答案