| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,e4) | D. | (e4,+∞) |
分析 根据条件构造函数令g(x)=$\frac{f(x)}{{e}^{x}}$,由求导公式和法则求出g′(x),根据条件判断出g′(x)的符号,得到函数g(x)的单调性,再由奇函数的结论:f(0)=0求出g(0)的值,将不等式进行转化后,利用g(x)的单调性可求出不等式的解集.
解答 解:由题意令g(x)=$\frac{f(x)}{{e}^{x}}$,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f'(x)<f(x),
∴g′(x)<0,
即g(x)在R上是单调递减函数,
∵y=f(x)-1为奇函数,
∴f(0)-1=0,即f(0)=1,g(0)=1,
则不等式f(x)<ex等价为$\frac{f(x)}{{e}^{x}}$<1=g(0),
即g(x)<g(0),
解得x>0,
∴不等式的解集为(0,+∞),
故选:B.
点评 本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{3}$ | B. | 6 | C. | $\frac{16}{3}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{1}{2}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{1}{2}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,4] | B. | [5,7] | C. | [4,6] | D. | [7,8] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,|x|+cosx<0 | B. | ?x∈R,|x|+cosx≤0 | C. | ?x∈R,|x|+cosx<0 | D. | ?x∈R,|x|+cosx≥0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com