精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a=(2,m)$,$\overrightarrow b=(m,2)$,若$\overrightarrow a∥\overrightarrow b$,则实数m等于(  )
A.-2B.2C.-2或2D.0

分析 利用向量共线的充要条件列出方程求解即可.

解答 解:向量$\overrightarrow a=(2,m)$,$\overrightarrow b=(m,2)$,若$\overrightarrow a∥\overrightarrow b$,
可得m2=4,解得m=±2.
故选:C.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称之为三角形的欧拉线.若△ABC的顶点A(2,0),B(0,4),且△ABC的欧拉线的方程为x-y+2=0,则顶点C的坐标为(  )
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-4}$的最大值为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若an=2n-1+1(n∈N*),则33是数列{an}的第6项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.同时满足下列两个性质的函数f(x)称为“H函数”:
①函数f(x)在定义域上是单调函数;
②函数f(x)在定义域内存在区间[a,b],使得f(x)在[a,b]的值域也为[a,b].
(1)判断函数y=x3是否为“H函数”,若不是,请说明理由;若是,求满足条件②的区间[a,b]中端点a,b的值
(2)若函数y=lgx-t是“H函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.0∉NB.$\sqrt{2}$∈QC.π∉RD.$\sqrt{4}$∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x+1)=2x-1,则f(x)的解析式为(  )
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k为常数)有四个零点,则这四个零点之和为(  )
A.-2kB.0C.2kD.4k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)求f(x)的极值;
(2)当m=0时,若不等式f(x)≥$\frac{k}{x+1}$对x∈[1,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案