精英家教网 > 高中数学 > 题目详情
16.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称之为三角形的欧拉线.若△ABC的顶点A(2,0),B(0,4),且△ABC的欧拉线的方程为x-y+2=0,则顶点C的坐标为(  )
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

分析 设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标.

解答 解:设C(m,n),由重心坐标公式得,
三角形ABC的重心为($\frac{2+m}{3}$,$\frac{4+n}{3}$),
代入欧拉线方程得:$\frac{2+m}{3}$-$\frac{4+n}{3}$+2=0,
整理得:m-n+4=0 ①
AB的中点为(1,2),直线AB的斜率k=$\frac{4-0}{0-2}$=-2,
AB的中垂线方程为y-2=$\frac{1}{2}$(x-1),即x-2y+3=0.
联立$\left\{\begin{array}{l}x-2y+3=0\\ x-y+2=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=-1\\ y=1\end{array}\right.$.
∴△ABC的外心为(-1,1).
则(m+1)2+(n-1)2=32+12=10,
整理得:m2+n2+2m-2n=8 ②
联立①②得:m=-4,n=0或m=0,n=4.
当m=0,n=4时B,C重合,舍去.
∴顶点C的坐标是(-4,0).
故选:A

点评 本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax3+3xlnx-1(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)若f(x)在区间$(\frac{1}{e},e)$(其中e=2.71 828…)上有且只有一个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:x2=2py(p>0),过其焦点作斜率为1的直线l交抛物线C于M、N两点,且|MN|=16.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆P与x轴交于A、B两点,且|DA|<|DB|,求$\frac{|DA|}{|DB|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x-3|-|x-a|
(1)如果f(x)>-4的解集是R,求实数a的取值范围;
(2)如果对任意的t∈(0,1),f(x)≤$\frac{1}{t}+\frac{9}{1-t}$对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,则x+2y的最小值为(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.计算$\int_0^4{|{x-2}|dx}$的值为(  )
A.2B.4C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}中,4a1,a3,2a2成等差数列,则公比q=(  )
A.2B.-1或-2C.-1或2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一次抽奖活动中,8张奖券中有一、二、三等奖各1张,其余5张无奖.甲、乙、丙、丁四名顾客每人从中抽取2张,则不同的获奖情况有(  )
A.24种B.36种C.60种D.96种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=(2,m)$,$\overrightarrow b=(m,2)$,若$\overrightarrow a∥\overrightarrow b$,则实数m等于(  )
A.-2B.2C.-2或2D.0

查看答案和解析>>

同步练习册答案