精英家教网 > 高中数学 > 题目详情
5.在一次抽奖活动中,8张奖券中有一、二、三等奖各1张,其余5张无奖.甲、乙、丙、丁四名顾客每人从中抽取2张,则不同的获奖情况有(  )
A.24种B.36种C.60种D.96种

分析 分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.

解答 解:分类讨论,一、二、三等奖,三个人获得,共有A43=24种;
一、二、三等奖,有1人获得2张,1人获得1张,共有C32A42=36种,
共有24+36=60种.
故选:C.

点评 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.一个几何体的三视图如图所示,则该几何体的体积为40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称之为三角形的欧拉线.若△ABC的顶点A(2,0),B(0,4),且△ABC的欧拉线的方程为x-y+2=0,则顶点C的坐标为(  )
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲线是圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F为抛物线C:y2=5x的焦点,点A(3,1),M是抛物线C上的动点,当|MA|+|MF|取最小值$\frac{17}{4}$时,
点M的坐标为($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不共线的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=|-2$\overrightarrow{a}$|,则向量2$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-4}$的最大值为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若an=2n-1+1(n∈N*),则33是数列{an}的第6项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k为常数)有四个零点,则这四个零点之和为(  )
A.-2kB.0C.2kD.4k

查看答案和解析>>

同步练习册答案