| A. | x=4 | B. | x=-2 | C. | x=-4 | D. | x=2 |
分析 由题设中的条件y2=2px的焦点与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1的左焦点重合,故可以先求出椭圆的左焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程.
解答 解:由题意椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1,
故它的左焦点坐标是(-2,0),
又y2=2px的焦点与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1的左焦点重合,
故-$\frac{p}{2}$=2得p=-4,
∴抛物线的准线方程为x=2.
故选:D.
点评 本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.
科目:高中数学 来源: 题型:选择题
| A. | -9 | B. | -8 | C. | -7 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{y^2}{16}-\frac{x^2}{4}$=1 | B. | y2-$\frac{x^2}{4}$=1 | C. | $\frac{y^2}{4}$-x2=1 | D. | $\frac{x^2}{4}$-y2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [-2,+∞) | C. | (-3,+∞) | D. | (-$\frac{9}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com