精英家教网 > 高中数学 > 题目详情
19.设数列{an}的通项公式为an=n2+bn,若数列{an}是单调递增数列,则实数b的取值范围为(  )
A.[1,+∞)B.[-2,+∞)C.(-3,+∞)D.(-$\frac{9}{2}$,+∞)

分析 数列{an}是单调递增数列,可得?n∈N*,an+1>an,化简整理,再利用数列的单调性即可得出.

解答 解:∵数列{an}是单调递增数列,
∴?n∈N*,an+1>an
(n+1)2+b(n+1)>n2+bn,
化为:b>-(2n+1),
∵数列{-(2n+1)}是单调递减数列,
∴n=1,-(2n+1)取得最大值-3,
∴b>-3.
即实数b的取值范围为(-3,+∞).
故选:C.

点评 本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知曲线C的参数方程为:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-{t}^{2}}\end{array}\right.$(t为参数),曲线E的参数方程为:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ为参数).
(1)求曲线C和曲线E的普通方程;
(2)求曲线C和曲线E的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{1}{2}$x,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{a}{x}$+lnx,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在区间(1,4)内单调递增,求a的取值范围;
(3)讨论函数g(x)=f′(x)-x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=4sin5ax-4$\sqrt{3}$cos5ax的图象的相邻两条对称轴之间的距离为$\frac{π}{3}$,则实数a的值为±$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y2=2px的焦点与椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1的左焦点重合,则抛物线y2=2px的准线方程为(  )
A.x=4B.x=-2C.x=-4D.x=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2016年全国“两会”于3月3日-3月16日在北京召开,参会代表积极参政议政,议大事谋良策,取得了一系列重要成果,某网站就网友对会议的了解情况随机调查了1000名网友,结果如表:
 不很了解  了解非常了解 
50岁以上  100 212 y
 50岁以下 x188  z
若从这1000名网友中随机抽取一名,抽到50名以下不很了解的概率为0.10.
(1)求x的值;
(2)若y≥193,z≥193,求“非常了解的网友中,50岁以下的人数不少于50岁以上的人数”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1、F2为双曲线C:$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左、右焦点,点P在C上,且∠F1PF2=$\frac{π}{3}$,则$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=$\int_0^1$(x-x2)dx,则二项式(x2-$\frac{12a}{x}$)6展开式中含x3的项的系数为(  )
A.160B.-160C.20D.-20

查看答案和解析>>

同步练习册答案