精英家教网 > 高中数学 > 题目详情

在△中,是角对应的边,向量,,且
(1)求角
(2)函数的相邻两个极值的横坐标分别为,求的单调递减区间.

(1);(2)

解析试题分析:本题主要考查向量的数量积、余弦定理、诱导公式、降幂公式、两家和与差的正弦公式、三角函数图像、三角函数的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力和数形结合思想.第一问,利用向量的数量积转化表达式,由于得到的表达式的形式类似于余弦定理,所以利用余弦定理求角C;第二问,利用三角形的内角和为,转化,将C角代入再利用倍角公式、降幂公式、两角和的正弦公式化简表达式为的形式,数形结合得到三角函数的周期,确定解析式后,再数形结合求函数的单调减区间.
(1)因为,所以
,.      5分
(2)
=
=
=        8分
因为相邻两个极值的横坐标分别为,所以的最小正周期为,
所以       10分

所以的单调递减区间为.      12分
考点:向量的数量积、余弦定理、诱导公式、降幂公式、两家和与差的正弦公式、三角函数图像、三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知的三内角所对的边分别是,向量
,且
(1)求角的大小;
(2)若,求的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度.
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60公里每小时的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

风景秀美的湖畔有四棵高大的银杏树,记做,欲测量两棵树和两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得两点间的距离为米,如图,同时也能测量出,则两棵树和两棵树之间的距离各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别是所对的边,,,三角形的面积为
(1)求的大小; (2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期及在区间的最大值;
(2)在中,所对的边分别是,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,点在直线
上.
(1)求角的值;
(2)若,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,
(1)求的值;
(2)求的面积.

查看答案和解析>>

同步练习册答案