精英家教网 > 高中数学 > 题目详情
11.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$
(1)求y关于x的回归直线方程.
(2)预测广告费支出为10(单位:百万元)时,销售额为多少?

分析 (1)先求得广告费支出x和销售额y的平均数,求得样本中心点,利用最小二乘法即可求得线性回归方程的系数$\widehat{b}$,代入样本中心点求得a,即可求得y关于x的回归直线方程;
(2)将x=10,代入线性回归方程,即可求得销售额.

解答 解:(1)由$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5,$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50,
$\sum_{i=1}^{5}$yixi=2×30+4×40+5×60+6×50+8×70=1380,5$\overline{x}$$\overline{y}$=5×5×50=1250,
$\sum_{i=1}^{5}$${x}_{i}^{2}$=4+16+25+36+64=145,5${\overline{x}}^{2}$=5×25=125,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{1380-1250}{145-125}$=6.5,
$\widehata=\overline y-\widehatb\overline x$=50-6.5×5=17.5,
∴线性回归方程:$\widehat{y}$=6.5x+17.5;
(2)当广告费支出为10(百万元)时,
$\widehat{y}$=6.5×10+17.5=82.5万元.

点评 本题考查线性回归方程的求法及应用,考查利用最小二乘法求线性回归方程的系数,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(ax+b)lnx-bx+3在(1,f(1))处的切线方程为y=2.
(1)求a,b的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x•ex+f′(-1)•x2,则f′(-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线y=ax-ln(x+1)在点(0,0)处的切线与直线2x-y-6=0平行,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知方程$\frac{x^2}{k-4}-\frac{y^2}{k-10}=1$表示焦点在x轴上的椭圆,则实数k的取值范围(  )
A.k>10B.k<4C.4<k<7D.7<k<10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知tanθ=$\frac{4}{3}$,θ∈(0,$\frac{π}{2}$),则cos($\frac{2π}{3}$-θ)=(  )
A.$\frac{3}{10}$B.-$\frac{3}{10}$C.$\frac{4\sqrt{3}-3}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α为第三象限的角,sinα=-$\frac{3}{5}$,则tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l的斜率k的取值范围为[-1,1],则其倾斜角α的取值范围是(  )
A.$[\frac{π}{4},\frac{3π}{4}]$B.$[0,\frac{3π}{4}]$C.$[-\frac{π}{4},\frac{π}{4}]$D.$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{{e}^{2x}-1}{{e}^{2x}+1}$的图象关于(  )
A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x

查看答案和解析>>

同步练习册答案