精英家教网 > 高中数学 > 题目详情
3.已知α为第三象限的角,sinα=-$\frac{3}{5}$,则tan2α=$\frac{24}{7}$.

分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,进而利用二倍角的正切函数公式即可求值得解.

解答 解:∵α为第三象限的角,sinα=-$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,tan$α=\frac{sinα}{cosα}$=$\frac{3}{4}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{24}{7}$.
故答案为:$\frac{24}{7}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.复数-1+$\frac{1}{i}$在复平面上对应的点的坐标是(  )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于P(K2≥k),当K>2.706时,就约有(  )把握认为“X与Y有关系”.(  )
本题可以参考独立性检验临界值表:
P(χ2≥k00.500.400.250.150.100.050.025
k00.4550.7081.3232.0722.7063.8415.024
A.99%B.95%C.90%D.以上不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$
(1)求y关于x的回归直线方程.
(2)预测广告费支出为10(单位:百万元)时,销售额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果三点A(1,5,-2),B(3,4,1),C(a,3,b+2)在同一直线上,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.有10块相同巧克力,小华每天至少吃一块,4天吃完则共有84种吃法.(用数字作答 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内有向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),点M为直线OP上的一个动点.
(1)当$\overrightarrow{MA}$•$\overrightarrow{MB}$取得最小值时,求点M的坐标;
(2)在点M满足(1)的条件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=$\frac{ax}{x+2}$在点(-1,-a)处的切线方程为2x-y+b=0,则a+b=(  )
A.0B.2C.-4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某初级中学有学生270人,其中七年级108人,八、九年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,学生按照七、八、九年级依次统一编号为1、2、3、…、270;使用系统抽样时,将学生统一随机编号为1、2、3、…、270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7、34、61、88、115、142、169、196、223、250
②5、9、100、107、111、121、180、190、200、265
③11、38、65、92、119、146、173、200、227、254
④30、57、84、111、138、165、192、219、246、270
关于上述样本的下列结论中,正确的是(  )
A.②③都不能为系统抽样B.②④都不能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样

查看答案和解析>>

同步练习册答案