精英家教网 > 高中数学 > 题目详情
12.曲线y=$\frac{ax}{x+2}$在点(-1,-a)处的切线方程为2x-y+b=0,则a+b=(  )
A.0B.2C.-4D.-3

分析 求出原函数的导函数,得到函数在x=-1时的导数,结合函数在点(-1,-a)处的切线方程为2x-y+b=0列式得答案.

解答 解:由线y=$\frac{ax}{x+2}$,得y′=$\frac{a(x+2)-ax}{(x+2)^{2}}=\frac{2a}{(x+2)^{2}}$,
∴y′|x=-1=2a,
则$\left\{\begin{array}{l}{2a=2}\\{-2+a+b=0}\end{array}\right.$,得a+b=2.
故选:B.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x•ex+f′(-1)•x2,则f′(-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α为第三象限的角,sinα=-$\frac{3}{5}$,则tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l的斜率k的取值范围为[-1,1],则其倾斜角α的取值范围是(  )
A.$[\frac{π}{4},\frac{3π}{4}]$B.$[0,\frac{3π}{4}]$C.$[-\frac{π}{4},\frac{π}{4}]$D.$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a$=(sinx,cosx),$\vec b$=(1,$\sqrt{3}$),若$\vec a⊥\vec b$,则tanx=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的点到直线x-2y-12=0的距离的最小值为$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足,a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$,(n≥3,n∈N*).则a2016=(  )
A.1B.2C.$\frac{1}{2}$D.2-2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{{e}^{2x}-1}{{e}^{2x}+1}$的图象关于(  )
A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在底面是菱形的四棱锥P-ABCD中,点E在PD上,且满足PE:ED=2:1,PA=AB=2,PA⊥底面ABCD,∠ABC=60°
(1)在棱PC上是否存在一点F,使BF∥平面AEC,若存在,求出PF的长度.
(2)求二面角P-AE-C的余弦值.

查看答案和解析>>

同步练习册答案