分析 (1)直线OP的方程为:y=$\frac{1}{2}$x,设M(2m,m),利用数量积运算性质、二次函数的单调性即可得出.
(2)利用数量积运算性质、向量夹角公式即可得出.
解答 解:(1)直线OP的方程为:y=$\frac{1}{2}$x,设M(2m,m),
$\overrightarrow{MA}$•$\overrightarrow{MB}$=(1-2m,7-m)•(5-2m,1-m)=(1-2m)•(5-2m)+(7-m)•(1-m)=5m2-20m+12=5(m-2)2-8,
当m=2时,$\overrightarrow{MA}$•$\overrightarrow{MB}$取得最小值-8,此时M(4,2).
(2)在点M满足(1)的条件下,M(4,2).
$\overrightarrow{MA}$=(-3,5),$\overrightarrow{MB}$=(1,-1),$\overrightarrow{MA}$•$\overrightarrow{MB}$=-8,|$\overrightarrow{MA}$|=$\sqrt{34}$,|$\overrightarrow{MB}$|=$\sqrt{2}$,
∴cos∠AMB=$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|\overrightarrow{MA}||\overrightarrow{MB}|}$=$\frac{-8}{\sqrt{34}×\sqrt{2}}$=-$\frac{4\sqrt{17}}{17}$.
点评 本题考查了数量积运算性质、二次函数的单调性、向量夹角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | k>10 | B. | k<4 | C. | 4<k<7 | D. | 7<k<10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{π}{4},\frac{3π}{4}]$ | B. | $[0,\frac{3π}{4}]$ | C. | $[-\frac{π}{4},\frac{π}{4}]$ | D. | $[0,\frac{π}{4}]∪[\frac{3π}{4},π)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 2-2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com