精英家教网 > 高中数学 > 题目详情
5.在△ABC中,A,B,C是其三个角,若sinA>sinB,则A与B的大小关系是(  )
A.A≥BB.A<BC.A>BD.不能确定

分析 利用正弦定理、三角形的边角关系即可得出.

解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,sinA>sinB>0,∴a>b,∴A>B.
故选:C.

点评 本题考查了正弦定理、三角形的边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.盒中有10只螺丝钉,其中有3只是坏的,现抽取3次,每次从盒中随机不放回地取1只,那么在第一只取到为好的前提下,恰有1只是坏的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{7}{40}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3-tx2+3x在区间[1,3]上单调递减,则实数t的取值范围是(  )
A.(-∞,3]B.(-∞,5]C.[3,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数-1+$\frac{1}{i}$在复平面上对应的点的坐标是(  )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.当x>0时,求f(x)=$\frac{12}{x}$+3x的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5
(2)归纳猜想通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=2,求
(1)tan(α+$\frac{π}{4}$)的值       
(2)$\frac{6sinα+cosα}{3sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于P(K2≥k),当K>2.706时,就约有(  )把握认为“X与Y有关系”.(  )
本题可以参考独立性检验临界值表:
P(χ2≥k00.500.400.250.150.100.050.025
k00.4550.7081.3232.0722.7063.8415.024
A.99%B.95%C.90%D.以上不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内有向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),点M为直线OP上的一个动点.
(1)当$\overrightarrow{MA}$•$\overrightarrow{MB}$取得最小值时,求点M的坐标;
(2)在点M满足(1)的条件下,求∠AMB的余弦值.

查看答案和解析>>

同步练习册答案