精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|$\frac{e}{x}$-lnx|,g(x)=|e1-x+lnx+a|
(1)将f(x)写成分段函数的形式(不用说明理由),并求f(x)的单调区间.
(2)若x≥1且-1-e1-x<a<-1,比较f(x)与g(x)的大小.

分析 (1)利用绝对值的应用将f(x)写成分段函数的形式,根据分段函数的表达式即可求f(x)的单调区间.
(2)若x≥1且-1-e1-x<a<-1,构造函数h(x)=e1-x+lnx+a,x∈[1,+∞).求函数的导数,利用导数研究函数的单调性和最值,利用分类讨论的思想即可比较f(x)与g(x)的大小.

解答 解:(1)$f(x)=\left\{\begin{array}{l}\frac{e}{x}-lnx,0<x<e\\ lnx-\frac{e}{x},x≥e\end{array}\right.$…(1分),
∵$f'(x)=\left\{\begin{array}{l}-\frac{e}{x^2}-\frac{1}{x},0<x<e\\ \frac{1}{x}+\frac{e}{x^2},x≥e\end{array}\right.$…(2分),
∴当0<x<e时f'(x)<0,f(x)单调递减,
当x>e时f'(x)>0,f(x)单调递增…(3分)
所以f(x)的单调增区间为[e,+∞),单调减区间为(0,e)…(4分)
(2)令h(x)=e1-x+lnx+a,x∈[1,+∞).
则$h'(x)=-{e^{1-x}}+\frac{1}{x}=\frac{1}{x}-\frac{1}{{{e^{x-1}}}}=\frac{{{e^{x-1}}-x}}{{x{e^{x-1}}}}$,
记φ(x)=ex-1-x,则x>1时φ′(x)=ex-1-1>0,φ(x)在(1,+∞)是增函数,φ(x)>φ(1)=0
所以在(1,+∞)上,h'(x)>0,h(x)在[1,+∞)内单调递增.
而h(x)≥h(1)=1+a,…(5分),
∵-1-e1-e<a<-1,∴h(1)=1+a<0,且h(e)=e1-e+1+a>0.
又因为h(x)在[1,e]上是增函数且连续不间断,
所以h(x)在[1,e]内有唯一的零点,
不妨设为c1,即${e^{1-{c_1}}}+ln{c_1}+a=0$,其中c1∈(1,e).…(6分)
又由于h(x)在[1,+∞)内单调递增,则当x∈[1,c1]时,h(x)≤h(c1)=0;
当x∈(c1,+∞)时,h(x)≥h(c1)=0.
那么$g(x)=\left\{{\begin{array}{l}{-{e^{1-x}}-lnx-a,x∈[{1,{c_1}}]}\\{{e^{1-x}}+lnx+a,x∈({{c_1},+∞})}\end{array}}\right.$.
再令p(x)=g(x)-f(x),x∈[1,+∞),则有$p(x)=\left\{{\begin{array}{l}{-{e^{1-x}}-\frac{e}{x}-a,x∈[{1,{c_1}}]}\\{{e^{1-x}}+2lnx-\frac{e}{x}+a,x∈({{c_1},e}]}\\{{e^{1-x}}+\frac{e}{x}+a,x∈({e,+∞})}\end{array}}\right.$.…(7分)
1)当x∈[1,c1]时,$p(x)=-{e^{1-x}}-\frac{e}{x}-a$,
p′(x)=e1-x+$\frac{e}{{x}^{2}}$>0,p(x)在[1,c1]上递增.又$-a={e^{1-{c_1}}}+ln{c_1}$
所以x=c1时,pmax(x)=p(c1)=-${e}^{1-{c}_{1}}$-$\frac{e}{{c}_{1}}$-a=lnc1-$\frac{e}{{c}_{1}}$<0,.
故当x∈[1,c1]时,p(x)<0,g(x)<f(x)…(8分)
2)当x∈[c1,e]时,∵φ(x)=ex-1-x>φ(1)=0,ex-1>x>0,
∴$p'(x)=-{e^{1-x}}+\frac{2}{x}+\frac{e}{x^2}>\frac{1}{x}-\frac{1}{{{e^{x-1}}}}>0$,p(x)在[c1,e]上单调递增.
pmin(x)=p(c1)=${e}^{1-{c}_{1}}$-$\frac{e}{{c}_{1}}$+2lnc1+a=lnc1-$\frac{e}{{c}_{1}}$<0,
pmax(x)=p(e)=e1-e+2-1+a=e1-e+1+a>0,p(x)为[c1,e]上单调递增且连续不间断,
知p(x)在[c1,e]有唯一个零点,不妨设为c2,则${e}^{1-{c}_{2}}$+2lnc2-$\frac{e}{{c}_{2}}$+a=0,其中c2∈(c1,e).
故当x∈(c1,c2]时,p(x)≤p(c2)=0,g(x)≤f(x);  …(9分)
当x∈(c2,e]时,p(x)>p(c2)=0,g(x)>f(x)…(10分)
3)当x∈(e,+∞)时,$p(x)={e^{1-x}}+\frac{e}{x}+a$,易知p(x)在(e,+∞)上单调递减.
又p(e)=e1-e+1+a>0,
p(2e)=e1-2e+$\frac{1}{2}+$a-$\frac{e}{{e}^{2e}}$+$\frac{1}{2}+a$≤$\frac{e}{2e+1}$+$\frac{1}{2}+a$<1+a<0,
p(x)为[e,2e]上单调递减且连续不间断,p(x)在[e,2e]有唯一的零点,不妨设为c3
即${e^{1-{c_3}}}-\frac{e}{c_3}+a=0$,其中c3∈(e,2e).由p(x)在(e,+∞)上单调递减,
有当x∈(e,c3]时,p(x)≥p(c3)=0; g(x)≥f(x)…(11分)
当(c3,+∞)时,p(x)<p(c3)=0.g(x)<f(x)…(12分)

点评 本题主要考查函数单调性的判断,构造函数,求函数的导数,利用导数研究函数的单调性是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(a)>1,则a的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π),若对满足|f(x1)-f(x2)|=2的x1,x2有|x1-x2|min=π,且函数f(x)的部分图象如图,则函数f(x)的解析式为(  )
A.f(x)=sin(x+$\frac{5π}{6}$)B.f(x)=sin(x-$\frac{π}{6}$)C.f(x)=sin(2x+$\frac{2π}{3}$)D.f(x)=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“爱心包裹”是中国扶贫基金会依托中国邮政发起的一项全民公益活动,社会各界爱心人士只需通过中国邮政网点捐购统一的爱心包裹,就可以一对一地将自己的关爱送给需要帮助的人.某高校青年志愿者协会响应号召,组织大一学生作为志愿者,开展一次爱心包裹劝募活动.将派出的志愿者分成甲、乙两个小组,分别在两个不同的场地进行劝募,每个小组各6人.爱心人士每捐购一个爱心包裹,志愿者就将送出一个钥匙扣作为纪念.以下茎叶图记录了这两个小组成员某天劝募包裹时送出钥匙扣的个数,且图中甲组的一个数据模糊不清,用x表示.已知甲组送出钥匙扣的平均数比乙组的平均数少1个.
(Ⅰ) 求图中x的值;
(Ⅱ)“爱心包裹”分为价值100元的学习包,和价值200元的“学习+生活”包,在乙组劝募的爱心包裹中100元和200元的比例为3:1,若乙组送出的钥匙扣的个数即为爱心包裹的个数,求乙组全体成员劝募的爱心包裹的价值总额;
(Ⅲ)在甲组中任选2位志愿者,求他们送出的钥匙扣个数都多于乙组的平均数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个不相等的非零向量$\overrightarrow{a},\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}},\overrightarrow{{x}_{2}},\overrightarrow{{x}_{3}},\overrightarrow{{x}_{4}},\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}},\overrightarrow{{y}_{2}},\overrightarrow{{y}_{3}},\overrightarrow{{y}_{4}},\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排成一列而成.记$\overrightarrow{{x}_{1}}•\overrightarrow{{y}_{1}}+\overrightarrow{{x}_{2}}•\overrightarrow{{y}_{2}}+\overrightarrow{{x}_{3}}•\overrightarrow{{y}_{3}}+\overrightarrow{{x}_{4}}•\overrightarrow{{y}_{4}}+\overrightarrow{{x}_{5}•\overrightarrow{{y}_{5}}}$,Smin表示S所有可能取值中的最小值,则下列正确的是(  )
A.${S_{min}}={a^2}+2ab+2{b^2}$B.${S_{min}}=2{a^2}+3{b^2}$
C.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关D.S有5个不同的值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}满足an+a${\;}_{n+1}=4n+2(n≥1,n∈{N}^{+})$,且a1=x,{an}单调递增,则x的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,如果输入n的值为4,则输出的S的值为(  )
A.15B.6C.-10D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明极限$\underset{lim}{(x,y)→(0,0)}$$\frac{xy}{{x}^{2}+{y}^{2}}$不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a∈R,则a2>3a是a>3的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案