精英家教网 > 高中数学 > 题目详情
抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.
(1);(2)4.

试题分析:(1)首先根据准线方程求得抛物线的标准方程,然后设直线直线l的方程,并与抛物线方程联立消去x得到关于y的二次方程,再利用韦达定理与中点坐标公式可求得m的值,进而得到直线l的方程;(2)根据条件中的垂直关系,利用A、B、F三点的坐标表示出向量,然后利用向量垂直的条件可得的值,进而可求得的面积.
试题解析:(1)∵抛物线的准线方程为,∴
∴抛物线的方程为
显然,直线与坐标轴不平行
∴设直线的方程为 ,
联立直线与抛物线的方程,得
,解得 .
∵点中点,∴,即
解得 ,
,∴

直线方程为.
(2)焦点





练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)已知点,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).

(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过的直线交椭圆于两点,若的周长为,则椭圆方程为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线是平面内与定点和定直线的距离的积等于的点的轨迹.给出下列四个结论:
①曲线过坐标原点;
②曲线关于轴对称;
③曲线轴有个交点;
④若点在曲线上,则的最小值为.
其中,所有正确结论的序号是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是以原点为中心,焦点在轴上的等轴双曲线在第一象限部分,曲线在点P处的切线分别交该双曲线的两条渐近线于两点,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的渐近线与抛物线的准线所围成的三角形面积为,则该双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案