精英家教网 > 高中数学 > 题目详情
已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为(  )
A.B.C.D.
D

试题分析:设,则;把坐标代入双曲线方程,用点差法可得,而,即,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得··?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ=λ,其中0<λ<1.

(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.

(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线轴的交点为定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设F(-c,0)是椭圆的左焦点,直线l:x=-与x轴交于P点,MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P的直线m与椭圆相交于不同的两点A,B。
①证明:∠AFM=∠BFN;
②求△ABF面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别为双曲线的左、右焦点,若在右支上存在点,使得点到直线的距离为,则该双曲线的离心率的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点P到y轴的距离为6,则点P到焦点的距离为(    )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,为侧面所在平面上的一个动点,且到平面的距离是到直线距离的倍,则动点的轨迹为(   )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

同步练习册答案