精英家教网 > 高中数学 > 题目详情
6.若a,b是异面直线,直线c∥a,则c与b的位置关系是(  )
A.异面或相交B.相交C.异面D.平行

分析 以正方体为载体,列举出所有情况,能求出结果.

解答 解:在正方体ABCD-A1B1C1D1中,
取AB=a,CC1=b,
当CD为c时,满足a,b是异面直线,直线c∥a,
此时b∩c=C,直线c与b相交,
当A1B1为c时,满足a,b是异面直线,直线c∥a,
此时直线c与b是异面直线.
∴若a,b是异面直线,直线c∥a,则c与b的位置关系是异面或相交.
故选:A.

点评 本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin($\frac{π}{2}$-x)sinx-$\sqrt{3}$sin2x.
(Ⅰ)求f(x)的最小正周期;
  (Ⅱ)求f(x)在区间[0,$\frac{π}{4}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:不等式2x-x2<m对一切实数x恒成立;命题q:|m-1|≥2.如果“¬p”与“p∧q”均为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kx(k≠0),且满足f(x+1)•f(x)=x2+x,
( I)求函数f(x)的解析式;
( II)若函数f(x)为R上的增函数,h(x)=$\frac{f(x)+1}{f(x)-1}$(f(x)≠1),问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以坐标轴为对称轴的等轴双曲线过点(2,$\sqrt{2}$),则该双曲线的方程是x2-y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形:

其中,能表示从集合M到集合N的函数关系的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABP的三个顶点都在抛物线C:x2=4y上,P在第一象限,如图.F为抛物线C的焦点,点M为AB的中点,$\overrightarrow{PF}$=3$\overrightarrow{FM}$,|PF|=3,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆x2+y2=5与直线2x-y-m=0相交于不同的A、B两点,O为坐标原点.
(1)求m的取值范围;
(2)若OA⊥OB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.利用行列式解关于x,y的二元一次方程组$\left\{\begin{array}{l}{mx+y=-1}\\{3mx-my=2m+3}\end{array}\right.$.

查看答案和解析>>

同步练习册答案