精英家教网 > 高中数学 > 题目详情
14.下列命题中错误的是(  )
A.命题“若x2-5x+6=0则x=2”的逆否命题是“若x≠2则x2-5x+6≠0”
B.命题“已知x、y∈R,若x+y≠3,则x≠2或y≠1是真命题”
C.已知命题p和q,若p∨q为真命题,则命题p与q中必一真一假
D.命题p:?x0∈R,x02+x0+1<0,则¬p:?x0∈R,x02+x0+1≥0

分析 根据命题为“若p则q”,命题的逆否命题为“若非q,则非p”,可判定A真假,根据条件判断B的真假,根据复合命题的真假判定C,根据全称命题特称命题判断D.

解答 解:对于A,命题“若x2-5x+6=0则x=2”的逆否命题是“若x≠2则x2-5x+6≠0”,正确,
对于B,命题“已知x、y∈R,若x+y≠3,则x≠2或y≠1是真命题,正确,
对于C,已知命题p和q,若p∨q为真命题,则命题p与q中至少一个为真,故错误,
对于D,命题p:?x0∈R,x02+x0+1<0,则¬p:?x0∈R,x02+x0+1≥0,正确,
故选:C.

点评 本题主要考查了命题的真假判断,以及逆否命题、复合命题的真假、全称命题特称命题,同时考查了分析问题的综合能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知a>b,则下列不等式成立的是(  )
A.a2-b2≥0B.ac>bcC.a3>b3D.ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{a}{x}$有如下性质:如果常数a>0,那么该函数在$({0,\sqrt{a}}]$上是减函数,在$[{\sqrt{a},+∞})$上是增函数.
(1)如果函数y=x+$\frac{3^b}{x}$(x>0)在(0,3]上是减函数,在[3,+∞)上是增函数,求b的值;
(2)设常数c∈[1,4],求函数f(x)=x+$\frac{c}{x}$(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$已知z为复数,\frac{z}{1-i}=3+i,则|z|$=(  )
A.$2\sqrt{5}$B.$5\sqrt{2}$C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|$\frac{3}{4}$-$\frac{1}{2}$x|-|$\frac{5}{4}$+$\frac{1}{2}$x|
(Ⅰ)关于x的不等式f(x)≥a2-3a恒成立,求实数a的取值范围;
(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.棱长为1的正方体ABCD-A1B1C1D1中,点P在平面ABCD上,满足PC1=3PA,则点P的轨迹为(  )
A.直线B.一段圆弧C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C过点P($\sqrt{2}$,0)且与圆M:(x+4)2+(y+4)2=r2(r>0),关于直线x+y+4=0对称.
(1)求圆C的方程;
(2)过点R(1,1)作两条相异直线分别与圆C相交于A、B,且直线RA和直线RB的倾斜角互补,O为坐标原点,试判断直线OR和直线AB是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示的平行六面体ABCD-A1B1C1D中,AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,则CA1的长=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=loga(-x2+ax-1)(a>0且a≠1)有最大值,则实数a的取值范围是a>2.

查看答案和解析>>

同步练习册答案