精英家教网 > 高中数学 > 题目详情
3.如图所示的平行六面体ABCD-A1B1C1D中,AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,则CA1的长=1.

分析 $\overrightarrow{C{A}_{1}}$=$\overrightarrow{CB}+\overrightarrow{CD}+\overrightarrow{A{A}_{1}}$,对上式取平方,利用平面向量的数量积计算出CA12,开方即得CA1的长度.

解答 解:∵AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,
∴$\overrightarrow{CB}•\overrightarrow{CD}$=0,$\overrightarrow{CB}•\overrightarrow{A{A}_{1}}$=cos120°=-$\frac{1}{2}$,$\overrightarrow{CD}•\overrightarrow{A{A}_{1}}$=cos120°=-$\frac{1}{2}$.
∵$\overrightarrow{C{A}_{1}}$=$\overrightarrow{CB}+\overrightarrow{CD}+\overrightarrow{A{A}_{1}}$,∴$\overrightarrow{C{A}_{1}}$2=($\overrightarrow{CB}+\overrightarrow{CD}+\overrightarrow{A{A}_{1}}$)2=$\overrightarrow{CB}$2+$\overrightarrow{CD}$2+$\overrightarrow{A{A}_{1}}$2+2$\overrightarrow{CB}•\overrightarrow{CD}$+2$\overrightarrow{CB}•\overrightarrow{A{A}_{1}}$+2$\overrightarrow{CD}•\overrightarrow{A{A}_{1}}$=1.
∴CA1=|$\overrightarrow{C{A}_{1}}$|=1.
故答案为1.

点评 本题考查了空间向量在立体几何中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=a(x-1)2-lnx,g(x)=$\frac{ex}{{e}^{x}}$,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为a≥$\frac{2}{(e-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中错误的是(  )
A.命题“若x2-5x+6=0则x=2”的逆否命题是“若x≠2则x2-5x+6≠0”
B.命题“已知x、y∈R,若x+y≠3,则x≠2或y≠1是真命题”
C.已知命题p和q,若p∨q为真命题,则命题p与q中必一真一假
D.命题p:?x0∈R,x02+x0+1<0,则¬p:?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正四面体ABCD的外接球半径为6,过棱AB作该球的截面,则截面面积的最小值为(  )
A.B.C.24πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=loga(x-3)+5(a>0且a≠1)的图象过定点P,角α的始边与x轴正半轴重合且终边过点P,则$\frac{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}{cos(\frac{π}{2}+α)sin(-π-α)}$的值为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>0,b>0,若3是9a与27b的等比中项,则$\frac{3}{a}+\frac{2}{b}$的最小值等于12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^2}-2x+1,k≤x≤a\end{array}\right.$,若存在实数k使函数f(x)的值域为[0,2],则实数a的取值范围为[$\frac{1}{2}$,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.幂函数y=f(x)的图象经过点A(2,4),则曲线y=f(x)在点A处切线的斜率为(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式|2x-1|-|x+1|<2的解集为{x|a<x<b}.
(1)求a,b的值;
(2)已知x>y>z,求证:存在实数k使-$\frac{3a}{2(x-y)}$+$\frac{b}{4(y-z)}$≥$\frac{k}{x-z}$恒成立,并求出k的最大值.

查看答案和解析>>

同步练习册答案