分析 (Ⅰ)由条件利用函数的单调性求得f(x)的最小值为-2,再根据-2≥a2-3a,求得a的范围.
(Ⅱ)根据函数的单调性f(m)≤2,f(n)≤2,结合f(m)+f(n)=4,可得m<n≤-$\frac{5}{2}$,由此求得m+n的范围.
解答 解:(Ⅰ)关于x的不等式f(x)≥a2-3a恒成立,即|$\frac{3}{4}$-$\frac{1}{2}$x|-|$\frac{5}{4}$+$\frac{1}{2}$x|≥a2-3a恒成立.
由于f(x)=|$\frac{3}{4}$-$\frac{1}{2}$x|-|$\frac{5}{4}$+$\frac{1}{2}$x|=$\left\{\begin{array}{l}{-2,x≥\frac{3}{2}}\\{-x-\frac{1}{2},-\frac{5}{2}<x<\frac{3}{2}}\\{2,x≤-\frac{5}{2}}\end{array}\right.$,故f(x)的最小值为-2,
∴-2≥a2-3a,求得1≤a≤2.
(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,
若f(m)+f(n)=4,∴m<n≤-$\frac{5}{2}$,∴m+n<-5.
点评 本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪(0,1] | B. | (0,1] | C. | (-∞,1] | D. | (-∞,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2-5x+6=0则x=2”的逆否命题是“若x≠2则x2-5x+6≠0” | |
| B. | 命题“已知x、y∈R,若x+y≠3,则x≠2或y≠1是真命题” | |
| C. | 已知命题p和q,若p∨q为真命题,则命题p与q中必一真一假 | |
| D. | 命题p:?x0∈R,x02+x0+1<0,则¬p:?x0∈R,x02+x0+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com