【题目】某高校在2016年的自主招生考试成绩中随机抽取了100名学生的笔试成绩,按成绩分组,得到的频率分布如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | ① | 0.350 | |
第3组 | 30 | ② | |
第4组 | 20 | 0.200 | |
第5组 | 10 | 0.100 | |
合计 | 100 | 1.00 |
(1)请求出频率分布表中①、②处应填的数据;
(2)为了能选拔最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样法抽取6名学生进入第二轮面试,问第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行的面试,求第4组有一名学生被考官A面试的概率.
【答案】(1)、;(2)第3、4、5组分别抽取3人、2人、1人进入第二轮面试;(3).
【解析】
(1)由频率分布直方图能求出第组的频数,第组的频率,即表中①、②处应填的数据;
(2)第3、4、5组共有60名学生,由此利用分层抽样在60名学生中抽取6名学生进入第二轮面试,能求出第3、4、5组分别抽取进入第二轮面试的人数.
(3)设第3组的3位同学为,,,第4组的2位同学为,,第5组的1位同学为,利用列举法能出从这六位同学中抽取两位同学,利用古典概型公式,得到所求概率.
(1)因为样本容量为,所以第组的频数为,
第三组的频率为,
故表中①、②处应填、;
(2)因为第3、4、5组共有60名学生,
所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,
每组抽取的人数分别为:
第3组:人,
第4组:人,
第5组:人,
所以第3、4、5组分别抽取3人、2人、1人进入第二轮面试.
(3)设第3组的3位同学为,,,
第4组的2位同学为,,
第5组的1位同学为,
则从这六位同学中抽取两位同学有15种选法,分别为:
,,,,,,,,
,,,,,,,
其中第组的2位同学,中至少有一位同学入选的有9种,分别为:
,,,,,
,,,,
所以由古典概型的公式可知,
第4组至少有一名学生被考官面试的概率为.
科目:高中数学 来源: 题型:
【题目】甲、乙两人在罚球线投球命中的概率分别为与,且各次投球相互之间没有影响.
(1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-2x2+x+a,g(x)=-2x+,若对任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学要举行元旦晚会,要求每班各出一个节目,其中高二年级一班学生中,有3名学生只会跳舞,有2名学生只会唱歌.
(I)求从上述5人中选出一人会唱歌的概率;
(II)写出该班出一个舞蹈节目的所有基本事件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
A.256B.350C.162D.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有个小组,甲、乙、丙三人分别在不同的小组.某次数学考试成绩公布情况如下:甲和三人中等第小组的那位的成绩不一样,丙比三人中第组的那位的成绩低,三人中第小组的那位比乙的成绩高.若将甲、乙、丙三人按数学成绩由高到低排列,则正确的排列顺序是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,以原点为圆心,短半轴长为半径的圆恰好经过椭圆的两焦点,且该圆截直线所得的弦长为.
(1)求椭圆的标准方程;
(2)过定点的直线交椭圆于两点、,椭圆上的点满足,试求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
平面直角坐标系xOy中,曲线C:.直线l经过点P(m,0),且倾斜角为.O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA|·|PB|=1,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com