精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,an+1=2an+3.求an
考点:数列递推式
专题:等差数列与等比数列
分析:把数列递推式两边加3得到新数列{an+3},该数列为等比数列,求出其通项公式,则an可求.
解答: 解:由an+1=2an+3,得an+1+3=2(an+3),
∵a1+3=1+3=4≠0,
an+1+3
an+3
=2,
∴数列{an+3}是以4为首项,以2为公比的等比数列,
∴an+3=4•2n-1=2n+1
则an=2n+1-3.
点评:本题考查了数列递推式,对于an+1=pan+q型的数列递推式,常用构造等比数列的方法求解,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,过点A(0,3),B(
3
,0)的直线l的倾斜角是(  )
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

直线:ax-y-(a-5)=0(a是参数)与抛物线f:y=(x+1)2的相交弦是AB,求弦AB的中点轨迹方程.(利用点差法)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-a(a≠0),g(x)=ex,其中e为自然对数的底数.
(1)当a=-1时,若不等式f(x)≥kg(x)恒成立,求实数k的最大值;
(2)若方程f(x)+g(x)=0没有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+8x+y2=0和圆N:x2-8x+y2+12=0,点P(x0,y0)(y0≠0),曲线C:x2-
y2
15
=1右支上的动点,线段PM、PN分别交圆M于A,交圆N于B.
(1)证明:△PAB是等腰三角形;
(2)记△PAB、△PMN的面积分别为S1、S2,求
S2
S1
的取值范围.
(3)记点A处圆M的切线为l1,点B处圆N的切线为l2,求l1和l2交点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,过点F且斜率为l的直线与抛物线交于两点M,N,坐标原点为O,且△MON的面积为2
2

(1)求抛物线C的方程;
(2)若椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)过点F,直线l:y=x+t被椭圆E截得的弦长的最大值为
8
3
,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产A,B两型会议桌,每套会议桌需经过加工木材和上油漆两道工序才能完成.已知做一套A,B型会议桌需要加工木材的时间分别为1小时和2小时,上油漆需要的时间分别为3小时和1小时.厂里规定:加工木材的时间每天不得超过8小时,上油漆的时间每天不得超过9小时.已知该厂生产一套A,B型会议桌分别可获得利润2千元和3千元,试问:该厂每天应分别生产A,B两型会议桌多少套,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)•g(y),③h(x•y)=h(x)+h(y),④m(x•y)=m(x)•m(y).又给出四个函数的图象,那么正确的匹配方案可以是(  )
A、①甲,②乙,③丙,④丁
B、①乙,②丙,③甲,④丁
C、①丙,②甲,③乙,④丁
D、①丁,②甲,③乙,④丙

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=lg(
x
10
)•lg(100x),x∈[
1
10
,10],用换元法求值域.

查看答案和解析>>

同步练习册答案