【题目】经市场调查:生产某产品需投入年固定成本为
万元,每生产
万件,需另投入流动成本为
万元,在年产量不足
万件时,![]()
(万元),在年产量不小于
万件时,
(万元).通过市场分析,每件产品售价为
元时,生产的商品能当年全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(2)当产量为多少时利润最大?并求出最大值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|﹣a.
(1)当a=1时,解不等式f(x)>x+1;
(2)若存在实数x,使得f(x)
f(x+1),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.如图是根据样本的调查结果绘制的等高条形图.
![]()
(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
赞成 | 不赞成 | 合计 | |
城镇居民 | |||
农村居民 | |||
合计 |
(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.
附:
,
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点
分别与两个定点
,
的连线的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)设过点
的直线与轨迹
交于
,
两点,判断直线
与以线段
为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程是
(
是参数),以坐标原点为原点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)判断直线
与曲线
的位置关系;
(2)过直线
上的点作曲线
的切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一正方体的棱长为
,作一平面
与正方体一条体对角线垂直,且
与正方体每个面都有公共点,记这样得到的截面多边形的周长为
,则( )
A.
B.
C.
D.以上都不正确
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com