【题目】将函数
在区间
内的全部极值点按从小到大的顺序排成数列
.
(1)求数列
的通项公式;
(2)设
,数列
的前n项和
,求证:数列
为等比数列,并求
.
科目:高中数学 来源: 题型:
【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.
![]()
(1)试估计该河流在8月份水位的众数;
(2)我们知道若该河流8月份的水位小于40米的频率为f,该河流8月份的水位小于40米的情况下发生1级灾害的频率为g,则该河流8月份的水位小于40且发生1级灾害的频率为
,其他情况类似.据此,试分别估计该河流在8月份发生12级灾害及不发生灾害的频率
,
,
;
(3)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:
方案 | 防控等级 | 费用(单位:万元) |
方案一 | 无措施 | 0 |
方案二 | 防控1级灾害 | 40 |
方案三 | 防控2级灾害 | 100 |
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查:生产某产品需投入年固定成本为
万元,每生产
万件,需另投入流动成本为
万元,在年产量不足
万件时,![]()
(万元),在年产量不小于
万件时,
(万元).通过市场分析,每件产品售价为
元时,生产的商品能当年全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(2)当产量为多少时利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
是实数.
(Ⅰ)若
在
处取得极值,求
的值;
(Ⅱ)若
在区间
为增函数,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,函数
有三个零点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数)。在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的极坐标方程为
。
(1)求直线
的普通方程和圆
的直角坐标方程;
(2)设圆
与直线
交于
,
两点,若点
的坐标为
,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的两个顶点A,B的坐标分别为(
,0),(
,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2
,动点C的轨迹为曲线G.
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上,
是坐标原点
,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)写出直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)已知点
,直线
与曲线
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com