精英家教网 > 高中数学 > 题目详情
13.已知实数x满足不等式2(log2x)2-7log2x+3≤0
(1)求实数x所满足的取值范围
(2)求函数f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$的最值.

分析 (1)令log2x=t,解关于t的不等式2t2-7t+3≤0结合对数的性质可得答案;
(2)化简可得f(x)=(log2x)2-3log2x+2,由$\frac{1}{2}$≤log2x≤3结合二次函数区间的最值可得.

解答 解:(1)令log2x=t,则2t2-7t+3≤0,
解得$\frac{1}{2}$≤t≤3,即$\frac{1}{2}$≤log2x≤3,
由对数可得$\sqrt{2}$≤x≤8
∴实数x所满足的取值范围为[$\sqrt{2}$,8];
(2)化简可得f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$
=(log2x-1)(log2x-2)
=(log2x)2-3log2x+2,
∵$\frac{1}{2}$≤log2x≤3,
∴当log2x=$\frac{3}{2}$时,函数取最小值-$\frac{1}{4}$;
当log2x=3时,函数取最大值2.

点评 本题考查对数不等式的解法,涉及函数的最值和对数的性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,$2\sqrt{3}$),C(0,$2\sqrt{3}$),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S; 
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式; 
(2)当纸片重叠部分的图形是四边形时,求t的取值范围; 
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.连接A(5,2),B(-1,4)两点线段的垂直平分线方程是3x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求使f(x)取得最大值的x的集合;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知α∈(0,$\frac{π}{2}$),cos($α+\frac{π}{4}$)=-$\frac{3}{5}$,则tanα=(  )
A.$\frac{1}{7}$B.7C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列说法:①常数列一定是等比数列;②公比为1的等比数列一定是常数列;③公比q>1的等比数列是递增数列; ④等比数列的一项可能等于0.其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-2λf(x).
(1)若λ=3,求函数G(x)的最小值;
(2)是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,在(-1,0)上为增函数?若存在,求出实数λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}\right.$求z=3x+y的最大值;
变:
(1)求z1=3x-y的最小值;
(2)求u=$\frac{y+1}{x+1}$的最小值;
(3)求t=$\sqrt{(x+1)^{2}+(y+1)^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=xf(-x)+10,则f(10)=$\frac{110}{101}$.

查看答案和解析>>

同步练习册答案