精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),| |=1.
(1)求 夹角;
(2)若 垂直,求点C的坐标;
(3)求| + + |的取值范围.

【答案】
(1)解:因为在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),所以

夹角的余弦值为 ,所以夹角为45°


(2)解:因为在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),所以

=(x,y).因为 垂直,又| |=1.

所以 ,解得 ,或 ,所以C ,或C


(3)解:由以上得到 + + =(3+x,1+y),| + + |2=(x+3)2+(y+1)2,又x2+y2=1,所以| + + |的最大值为 ,最小值为
【解析】(1)由已知,得到 的坐标,然后根据数量积求夹角;(2)由 垂直,得到数量积为0,得到点C的坐标的方程解之;(3)根据| |=1,结合| + + |的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)
(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)||x|≤2,|y|≤1},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=1内的概率.
(2)若x,y都是整数,求以(x,y)为坐标的点落在圆x2+y2=1内或该圆上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,根据下列条件解三角形,则其中有两个解的是(
A.b=10,A=45°,B=60°
B.a=60,c=48,B=120°
C.a=7,b=5,A=75°
D.a=14,b=16,A=45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱与四边形相交于 平面 的中点, .

(I)求证: 平面

(II)求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)讨论的单调性;

2)设,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在y轴上的圆C经过点A(1,2)和点B(0,3).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l在两坐标轴上的截距相等,且被圆C截得的弦长为 ,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

查看答案和解析>>

同步练习册答案