精英家教网 > 高中数学 > 题目详情

已知圆过点,且圆心在直线上。

(I) 求圆的方程;

(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为

,以为直径的圆过原点.

若存在这样的直线,请求出其方程;若不存在,说明理由.


解:(1)设圆C的方程为

解得D=-6,E=4,F=4

所以圆C方程为  

(2)设直线存在,其方程为,它与圆C的交点设为A、B

则由(*)

         

=因为AB为直径,所以,

,                

 ∴

,∴

容易验证时方程(*)有实根.

故存在这样的直线有两条,其方程是.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


在锐角中,角所对的边分别为,且满足

(1)求角的大小;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


若椭圆的离心率为,则双曲线的渐近线方程

是________

查看答案和解析>>

科目:高中数学 来源: 题型:


 过圆上的一点的圆的切线方程是

A.                   B. 

C.                      D.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所在平面,的直径,上一点,,

给出下列结论:①; ②;③;  ④平面平面 

  ⑤是直角三角形

其中正确的命题的序号是               

 


查看答案和解析>>

科目:高中数学 来源: 题型:


小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离小于,则周末去踢球,否则去图书馆.则小波周末去图书馆的概率是

A.            B.                C.                D. 

查看答案和解析>>

科目:高中数学 来源: 题型:


若关于x的方程有五个互不相等的实根,则的取值

范围是

        A.                          B.     

        C.                D. 

查看答案和解析>>

科目:高中数学 来源: 题型:


 正方体为棱的中点(如图1),用过点的平

面截去该正方体的上半部分,则剩余几何体的左视图为

 


A.              B.              C.                  D.

查看答案和解析>>

科目:高中数学 来源: 题型:


函数的图象为(    )

查看答案和解析>>

同步练习册答案