【题目】已知平面内的向量,满足:,,且与的夹角为,又,,,则由满足条件的点所组成的图形面积是( )
A. 2 B. C. 1 D.
科目:高中数学 来源: 题型:
【题目】给出下列4个命题,其中正确命题的个数是( )
①计算:9192除以100的余数是1;
②命题“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;
④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过吨时,按每吨元收取;当该用户用水量超过吨时,超出部分按每吨元收取.
(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为元,且甲、乙两用户用水量之比为,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣ , ]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是( )
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣ , )
D.(﹣∞,﹣ ]∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(销售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求关于的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?
相关公式: , .
【答案】(1).(2)投入成本20万元的毛利率更大.
【解析】试题分析:(1)由回归公式,解得线性回归方程为;(2)当时, ,对应的毛利率为,当时, ,对应的毛利率为,故投入成本20万元的毛利率更大。
试题解析:
(1), ,
, ,故关于的线性回归方程为.
(2)当时, ,对应的毛利率为,
当时, ,对应的毛利率为,
故投入成本20万元的毛利率更大.
【题型】解答题
【结束】
21
【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,满足,.
(1)求函数的解析式;
(2)若关于的不等式在上有解,求实数的取值范围;
(3)若函数的两个零点分别在区间和内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD – A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.
(1)求异面直线EF与DG所成角的余弦值;
(2)设二面角A—BD—G的大小为θ,求 |cosθ| 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆的离心率为,左右焦点分别为和,以点为圆心,以为半径的圆与以点为圆心,以为半径的圆相交,且交点在椭圆上.
()求椭圆的方程.
()设椭圆, 为椭圆上任意一点,过点的直线交椭圆于、两点,射线交椭圆于点.
①求的值.
②(理科生做)求面积的最大值.
③(文科生做)当时, 面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com