| A. | 向左平行移动$\frac{3π}{8}$个单位 | B. | 向右平行移动$\frac{3π}{8}$个单位 | ||
| C. | 向左平行移动$\frac{3π}{4}$个单位 | D. | 向右平行移动$\frac{3π}{4}$个单位 |
分析 利用两角和的正弦公式、诱导公式化简函数的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:函数y=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),函数y=$\sqrt{2}$cos2x=$\sqrt{2}$sin(2x+$\frac{π}{2}$),
故把函数y=$\sqrt{2}$cos2x的图象向右平行移动$\frac{3π}{8}$个单位,
可得函数y=sin2x-cos2x═$\sqrt{2}$sin(2x-$\frac{π}{4}$) 的图象,
故选:B.
点评 本题主要考查两角和的正弦公式、诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
| 个 数 | 20 | 30 | 80 | 40 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [f(0),f(5)] | B. | [f(0),f($\frac{2}{3}$)] | C. | [f($\frac{2}{3}$),f(5)] | D. | [c,f(5)] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 网购金额(元) | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.3 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
| x | 网龄3年以上 | 网龄不足3年 | 合计 |
| 购物金额在2000元以上 | 35 | ||
| 购物金额在2000元以下 | 20 | ||
| 总计 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “若a2+b2+c2≥3,则a+b+c=3” | B. | “若a2+b2+c2<3,则a+b+c≠3” | ||
| C. | “若a2+b2+c2≥3,则a+b+c≠3” | D. | “若a2+b2+c2<3,则a+b+c=3” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com