精英家教网 > 高中数学 > 题目详情
10.函数f(x)=$\sqrt{-{x}^{2}+4x}$的单调增区间为(  )
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

分析 令t=-x2+4x≥0,求得函数的定义域,f(x)=g(t)=$\sqrt{t}$,本题即求函数t在定义域内的增区间,再来一用二次函数的性质可得结论.

解答 解:令t=-x2+4x≥0,求得0≤x≤4,可得函数的定义域为[0,4],f(x)=$\sqrt{t}$,
故本题即求函数t在定义域内的增区间,
再来一用二次函数的性质可得t在定义域内的增区间为[0,2],
故选:A.

点评 本题主要考查复合函数的单调性,根式函数、二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若$\frac{1+sinx}{cosx}$=2,则$\frac{1-sinx}{cosx}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了得到函数y=sin2x-cos2x的图象,可以将函数y=$\sqrt{2}$cos2x的图象(  )
A.向左平行移动$\frac{3π}{8}$个单位B.向右平行移动$\frac{3π}{8}$个单位
C.向左平行移动$\frac{3π}{4}$个单位D.向右平行移动$\frac{3π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{3}{4}$x,且其右焦点为(5,0),则双曲线C的方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,3,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到得32人中,编号落入区间[1,460]的人做问卷A,编号落入区间[461,761]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为:10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则f(x)的解析式是f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{{3{x^2}+mx}}{e^x}$(m∈R).
(1)若f(x)在x=0处取得极值,求实数m的值,并确定f(0)是极大值还是极小值;
(2)若f(x)在[3,+∞)上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{{\sqrt{1-x}}}{{\sqrt{x}}}$的定义域为(  )
A.(0,+∞)B.(0,1]C.(-∞,0)∪[1,+∞)D.(-∞,1]

查看答案和解析>>

同步练习册答案