分析 由题意,函数f(x)为奇函数,f(-x)=-f(x),当x>0时,f(x)=x2-2x+3,可求x>0时的解析式.
解答 解:函数f(x)时R上的奇函数,即f(-x)=-f(x),f(0)=0
当x>0时,f(x)=x2-2x+3,
当x<0时,则-x>0,那么:f(-x)=x2+x+3,
∵f(-x)=-f(x),
∴f(x)=-x2-2x-3,
故得函数f(x)解析式为f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.
故答案为:f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.
点评 本题考查了分段函数解析式的求法,利用了函数是奇函数这一性质.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 网购金额(元) | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.3 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
| x | 网龄3年以上 | 网龄不足3年 | 合计 |
| 购物金额在2000元以上 | 35 | ||
| 购物金额在2000元以下 | 20 | ||
| 总计 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢冷冻 | 不喜欢冷冻 | 合计 | |
| 女学生 | 60 | 20 | 80 |
| 男学生 | 10 | 10 | 20 |
| 合计 | 70 | 30 | 100 |
| P(χ2≥k) | 0.100 | 0.050 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “若a2+b2+c2≥3,则a+b+c=3” | B. | “若a2+b2+c2<3,则a+b+c≠3” | ||
| C. | “若a2+b2+c2≥3,则a+b+c≠3” | D. | “若a2+b2+c2<3,则a+b+c=3” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com