精英家教网 > 高中数学 > 题目详情
11.命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是(  )
A.“若a2+b2+c2≥3,则a+b+c=3”B.“若a2+b2+c2<3,则a+b+c≠3”
C.“若a2+b2+c2≥3,则a+b+c≠3”D.“若a2+b2+c2<3,则a+b+c=3”

分析 根据命题“若p,则q”的逆命题是“若q,则p”,写出逆命题即可.

解答 解:命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是:
“若a2+b2+c2≥3,则a+b+c=3”.
故选:A

点评 本题考查了命题与它的逆命题的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.为了得到函数y=sin2x-cos2x的图象,可以将函数y=$\sqrt{2}$cos2x的图象(  )
A.向左平行移动$\frac{3π}{8}$个单位B.向右平行移动$\frac{3π}{8}$个单位
C.向左平行移动$\frac{3π}{4}$个单位D.向右平行移动$\frac{3π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则f(x)的解析式是f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x-3,(x<0)}\\{0,(x=0)}\\{{x}^{2}-2x+3,(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{{3{x^2}+mx}}{e^x}$(m∈R).
(1)若f(x)在x=0处取得极值,求实数m的值,并确定f(0)是极大值还是极小值;
(2)若f(x)在[3,+∞)上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,其侧视图是一个等边三角形,则此几何体的体积是(  )
A.24$\sqrt{3}$B.8$\sqrt{3}$C.16$\sqrt{3}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|3≤x<5},B={x|2<x<9},求∁R(A∪B),∁R(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x0∈(0,+∞),ln x0=x0-1”的否定是(  )
A.?x∈(0,+∞),ln x≠x-1B.?x∉(0,+∞),ln x=x-1
C.?x0∈(0,+∞),ln x0≠x0-1D.?x0∉(0,+∞),ln x0=x0-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{{\sqrt{1-x}}}{{\sqrt{x}}}$的定义域为(  )
A.(0,+∞)B.(0,1]C.(-∞,0)∪[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{{\begin{array}{l}x&{x∈[-1,0]}\\{\sqrt{1-{x^2}}}&{x∈(0,1]}\end{array}}$,则$\int_{-1}^1{f(x){d_x}}$=$\frac{1}{4}π$-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案