精英家教网 > 高中数学 > 题目详情
3.命题“?x0∈(0,+∞),ln x0=x0-1”的否定是(  )
A.?x∈(0,+∞),ln x≠x-1B.?x∉(0,+∞),ln x=x-1
C.?x0∈(0,+∞),ln x0≠x0-1D.?x0∉(0,+∞),ln x0=x0-1

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x0∈(0,+∞),ln x0=x0-1”的否定是:?x∈(0,+∞),ln x≠x-1.
故选:A.

点评 本题考查特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)先求出x,y,p,q的值,再将如图3所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
x网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
总计100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在(2000,2500]和(2500,3000]两组所抽出的8人中再随机抽取2人各奖励1000元现金,求(2000,2500]组获得现金将的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为(  )
A.$\sqrt{2}$B.2-$\sqrt{2}$C.1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是(  )
A.“若a2+b2+c2≥3,则a+b+c=3”B.“若a2+b2+c2<3,则a+b+c≠3”
C.“若a2+b2+c2≥3,则a+b+c≠3”D.“若a2+b2+c2<3,则a+b+c=3”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:sin(-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,tan(-$\frac{7π}{6}$)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求适合下列条件的双曲线的标准方程
(Ⅰ)过点(3,-1),且离心率$e=\sqrt{2}$;
(Ⅱ)一条渐近线为$y=-\frac{3}{2}x$,顶点间距离为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(3-2a)>f(a),则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若[x]表示不超过x的最大整数,如[2,6]=2,[-2,6]=-3,执行如图所示的程序框图,记输出的值为S0,则${log_{\frac{1}{3}}}{S_0}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)是定义在R上的奇函数,且x≤0时f(x)=3x-2x+m(m∈R,m为常数),则f(2)=$-\frac{28}{9}$.

查看答案和解析>>

同步练习册答案