精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|3≤x<5},B={x|2<x<9},求∁R(A∪B),∁R(A∩B).

分析 直接由交、并、补集的混合运算得答案.

解答 解:∵集合A={x|3≤x<5},B={x|2<x<9},
∴A∪B={x|2<x<9},A∩B={x|3≤x<5},
∴∁R(A∪B)={x|x≤2或x≥9},∁R(A∩B)={x|x<3或x≥5}

点评 本题考查交、并、补集的混合运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.当x∈(0,5]时,函数f(x)=3x2-4x+c的值域为(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.夏天到了,某中学餐饮中心为了解学生对冷冻降暑食品的饮食习惯,在全校二年级学生中进行了抽样调查,调查结果如表所示:
喜欢冷冻不喜欢冷冻合计
女学生602080
男学生101020
合计7030100
(1)根据表中数据,问是否有95%的把握认为“女学生和男学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名高二(15)班的学生,其中2名不喜欢冷冻降暑食品.现在从这5名学生中随机抽取2人,求至多有1人喜欢冷冻降暑食品的概率.
P(χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等比数列{an}的前n项和为Sn,且S3=7,S6=63.
(1)求an和Sn
(2)记数列{Sn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是(  )
A.“若a2+b2+c2≥3,则a+b+c=3”B.“若a2+b2+c2<3,则a+b+c≠3”
C.“若a2+b2+c2≥3,则a+b+c≠3”D.“若a2+b2+c2<3,则a+b+c=3”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=$\frac{12}{13}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(-$\frac{π}{4}$,$\frac{π}{4}$),则sin(α+β)=$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求适合下列条件的双曲线的标准方程
(Ⅰ)过点(3,-1),且离心率$e=\sqrt{2}$;
(Ⅱ)一条渐近线为$y=-\frac{3}{2}x$,顶点间距离为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个结论中正确的个数是(  )
(1)“x2+x-2>0”是“x>1”的充分不必要条件;
(2)命题:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”;
(3)“若x=$\frac{π}{4}$,则tanx=1”的逆命题为真命题;
(4)若f(x)是R上的奇函数,则f(log32)+f(log23)=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l1:x+my+6=0与l2:(m-2)x+3my+2m=0.
(1)当m为何值时,l1与l2平行;
(2)当m为何值时,l1与l2垂直.

查看答案和解析>>

同步练习册答案