分析 (1)由q=1时,则S6=2S3,与S3=7,S6=63矛盾,当q≠1,由$\left\{\begin{array}{l}{{S}_{3}=\frac{{a}_{1}(1-{q}^{3})}{1-q}}\\{{S}_{7}=\frac{{a}_{1}(1-{q}^{7})}{1-q}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,an=a1•qn-1=2n-1,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=2n-1;
(2)由(1)可知:由Tn=21-1+22-1+…+2n-1,采用分组求和,利用等差数列及等比数列前n项和公式,即可求得Tn.
解答 解:(1)若q=1时,则S6=2S3,与S3=7,S6=63矛盾,
∴q≠1.…(1分)
当q≠1,由$\left\{\begin{array}{l}{{S}_{3}=\frac{{a}_{1}(1-{q}^{3})}{1-q}}\\{{S}_{7}=\frac{{a}_{1}(1-{q}^{7})}{1-q}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,
由等比数列通项公式可知:an=a1•qn-1=2n-1,
则Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=2n-1;…(10分)
(2)数列{Sn}的前n项和为Tn,Tn=21-1+22-1+…+2n-1,
=2+22+…+2n-n,
=$\frac{2(1-{2}^{n})}{1-2}$-n,
=2n+1-n-2,
数列{Sn}的前n项和为Tn=2n+1-n-2.
点评 本题考查等比数列通项公式及前n项和公式,考查分组求和的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{3}$] | B. | (0,$\frac{1}{3}$] | C. | (0,+∞) | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∨(¬q) | B. | p∨(¬q) | C. | (¬p)∧(¬q) | D. | p∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com