精英家教网 > 高中数学 > 题目详情
14.若集合M={y|y=3x},N={x|y=$\sqrt{1-3x}$},则M∩N=(  )
A.[0,$\frac{1}{3}$]B.(0,$\frac{1}{3}$]C.(0,+∞)D.(-∞,$\frac{1}{3}$]

分析 求出M中y的范围确定出M,求出N中x的范围确定出N,找出两集合的交集即可.

解答 解:由M中y=3x>0,得到M=(0,+∞),
由N中y=$\sqrt{1-3x}$,得到1-3x≥0,
解得:x≤$\frac{1}{3}$,即N=(-∞,$\frac{1}{3}$),
则M∩N=(0,$\frac{1}{3}$],
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,则函数g(x)=f(x)-x的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{4}{x}$(其中x>0).
(Ⅰ)求证:f(x)在(0,2]上是减函数,在[2,+∞)上是增函数;
(Ⅱ)求函数f(x)在区间[2,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定义在[-1,1]上的奇函数,f(x)的最大值为$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函数f(x)的解析式;
( II)判断函数f(x)的单调性;并证明你的结论;
( III)当存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立时,请同学们探究实数m的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对某电子元件进行寿命追踪调查,情况如表.
寿命(h)100~200200~300300~400400~500500~600
个  数2030804030
(1)列出频率分布表,并画出频率分布直方图;
(2)从频率分布直方图估计出电子元件寿命的众数、中位数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知|${\overrightarrow a}$|=$\frac{1}{2}$|${\overrightarrow b}$|,函数f(x)=$\frac{1}{3}$x3+|${\overrightarrow a}$|x2+$\overrightarrow a$•$\overrightarrow b$x-|${\overrightarrow a$+$\overrightarrow b}$|在R上有极值,则向量$\overrightarrow a$与$\overrightarrow b$的夹角的范围是(  )
A.[$0\;,\;\frac{π}{6}$)B.$(\frac{π}{6}\;,\;π)$C.$(\frac{π}{3}\;,\;π)$D.$(\frac{π}{3}\;,\;π$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当x∈(0,5]时,函数f(x)=3x2-4x+c的值域为(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义域为R的奇函数f(x),当x>0时,f(x)=x2-3.
(1)求函数f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等比数列{an}的前n项和为Sn,且S3=7,S6=63.
(1)求an和Sn
(2)记数列{Sn}的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案