·ÖÎö £¨¢ñ£©¸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØÏµ¼´¿ÉÈ·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©¸ù¾Ýº¯Êýµ¥µ÷ÐԵ͍Òå¼´¿ÉÅжÏf£¨x£©µÄµ¥µ÷ÐÔ²¢Óö¨ÒåÖ¤Ã÷£»
£¨¢ó£©ÀûÓú¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔÖ®¼äµÄ¹ØÏµ¼´mx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢£®
½â´ð ½â£º£¨ I£©ÒòΪ$f£¨x£©=\frac{ax+b}{{{x^2}+c}}£¨a¡Ê{N^*}£¬b¡ÊR£¬0£¼c¡Ü1£©$¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý
ËùÒÔf£¨0£©=0¼´b=0¡£¨1·Ö£©
$f£¨x£©=\frac{ax}{{{x^2}+c}}=\frac{a}{{x+\frac{c}{x}}}$£»Áî$¦Ì=x+\frac{c}{x}$£¬£¨0£¼c¡Ü1£©ÔÚx¡Ê£¨0£¬1]ÉÏ×îСֵΪ${¦Ì_{min}}=¦Ì£¨\sqrt{c}£©=2\sqrt{c}$£¬ËùÒÔ$f{£¨x£©_{max}}=\frac{a}{{2\sqrt{c}}}=\frac{1}{2}$£¬¼´$a=\sqrt{c}$¡¢Ù¡£¨3·Ö£©
ÓÖ$f£¨1£©=\frac{a}{1+c}£¾\frac{2}{5}$£¬¡¢Ú
Óɢ٢ڿɵÃ$\frac{1}{2}£¼a£¼2$£¬ÓÖÒòΪa¡ÊN*£¬ËùÒÔc=a=1
¹Ê$f£¨x£©=\frac{x}{{{x^2}+1}}$¡£¨5·Ö£©
£¨ II£©º¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý£»
ÏÂÖ¤Ã÷£ºÉèÈÎÒâx1£¬x2¡Ê[-1£¬1]ÇÒx1£¼x2
Ôò$f£¨{x_1}£©-f£¨{x_2}£©=\frac{x_1}{{{x_1}^2+1}}-\frac{x_2}{{{x_2}^2+1}}=\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}$
ÒòΪx1£¼x2£¬ËùÒÔx1-x2£¼0£¬ÓÖÒòΪx1£¬x2¡Ê[-1£¬1]£¬ËùÒÔ1-x1x2£¾0
¼´$\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}£¼0$£¬¼´f£¨x1£©£¼f£¨x2£©
¹Êº¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý ¡£¨9·Ö£©
£¨ III£©ÒòΪf£¨mx-x£©+f£¨x2-1£©£¾0£¬ËùÒÔf£¨mx-x£©£¾-f£¨x2-1£©¼´f£¨mx-x£©£¾f£¨1-x2£©
ÓÖÓÉ£¨ II£©º¯Êýy=f£¨x£©ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý
ËùÒÔmx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢
¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹ$m£¾-x+\frac{1}{x}+1$³ÉÁ¢ÇÒ$1-\frac{1}{x}¡Üm¡Ü1+\frac{1}{x}$³ÉÁ¢
µÃ£ºm£¾1ÇÒ-1¡Üm¡Ü2
¹ÊʵÊýmµÄËùÓпÉÄÜȡֵ{m|1£¼m¡Ü2}¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔµÄÓ¦Óã¬ÒÔ¼°º¯Êýµ¥µ÷ÐÔµÄÖ¤Ã÷£¬×ۺϿ¼²éº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{\sqrt{2}}{3}$ | B£® | $\frac{\sqrt{2}}{3}$ | C£® | -$\frac{1}{3}$ | D£® | $\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | 6 | C£® | 7 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨-1£©£¾f£¨$\frac{\sqrt{3}}{3}$£© | B£® | f£¨$\sqrt{2}$£©£¾f£¨-$\sqrt{2}$£© | C£® | f£¨4£©£¾f£¨3£© | D£® | f£¨-$\sqrt{2}$£©£¾f£¨$\sqrt{3}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒª | B£® | ±ØÒª²»³ä·Ö | C£® | ³ä·ÖÇÒ±ØÒª | D£® | ÎÞ¹Ø |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 3 | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [0£¬$\frac{1}{3}$] | B£® | £¨0£¬$\frac{1}{3}$] | C£® | £¨0£¬+¡Þ£© | D£® | £¨-¡Þ£¬$\frac{1}{3}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬2ln2+3£© | B£® | £¨-¡Þ£¬2ln2-3£© | C£® | £¨2ln2-3£¬+¡Þ£© | D£® | £¨2ln2+3£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com