2£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ax+b}{{{x^2}+c}}$£¨a{N*£¬b¡ÊR£¬0£¼c¡Ü1£©¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý£¬f£¨x£©µÄ×î´óֵΪ$\frac{1}{2}$£¬ÇÒf£¨1£©£¾$\frac{2}{5}$£®
£¨ I£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨ II£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨ III£©µ±´æÔÚx¡Ê[$\frac{1}{2}$£¬1]ʹµÃ²»µÈʽf£¨mx-x£©+f£¨x2-1£©£¾0³ÉÁ¢Ê±£¬ÇëͬѧÃÇ̽¾¿ÊµÊýmµÄËùÓпÉÄÜȡֵ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØÏµ¼´¿ÉÈ·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©¸ù¾Ýº¯Êýµ¥µ÷ÐԵ͍Òå¼´¿ÉÅжÏf£¨x£©µÄµ¥µ÷ÐÔ²¢Óö¨ÒåÖ¤Ã÷£»
£¨¢ó£©ÀûÓú¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔÖ®¼äµÄ¹ØÏµ¼´mx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢£®

½â´ð ½â£º£¨ I£©ÒòΪ$f£¨x£©=\frac{ax+b}{{{x^2}+c}}£¨a¡Ê{N^*}£¬b¡ÊR£¬0£¼c¡Ü1£©$¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý
ËùÒÔf£¨0£©=0¼´b=0¡­£¨1·Ö£©
$f£¨x£©=\frac{ax}{{{x^2}+c}}=\frac{a}{{x+\frac{c}{x}}}$£»Áî$¦Ì=x+\frac{c}{x}$£¬£¨0£¼c¡Ü1£©ÔÚx¡Ê£¨0£¬1]ÉÏ×îСֵΪ${¦Ì_{min}}=¦Ì£¨\sqrt{c}£©=2\sqrt{c}$£¬ËùÒÔ$f{£¨x£©_{max}}=\frac{a}{{2\sqrt{c}}}=\frac{1}{2}$£¬¼´$a=\sqrt{c}$¡­¢Ù¡­£¨3·Ö£©
ÓÖ$f£¨1£©=\frac{a}{1+c}£¾\frac{2}{5}$£¬¡­¢Ú
Óɢ٢ڿɵÃ$\frac{1}{2}£¼a£¼2$£¬ÓÖÒòΪa¡ÊN*£¬ËùÒÔc=a=1
¹Ê$f£¨x£©=\frac{x}{{{x^2}+1}}$¡­£¨5·Ö£©
£¨ II£©º¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý£»
ÏÂÖ¤Ã÷£ºÉèÈÎÒâx1£¬x2¡Ê[-1£¬1]ÇÒx1£¼x2
Ôò$f£¨{x_1}£©-f£¨{x_2}£©=\frac{x_1}{{{x_1}^2+1}}-\frac{x_2}{{{x_2}^2+1}}=\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}$
ÒòΪx1£¼x2£¬ËùÒÔx1-x2£¼0£¬ÓÖÒòΪx1£¬x2¡Ê[-1£¬1]£¬ËùÒÔ1-x1x2£¾0
¼´$\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}£¼0$£¬¼´f£¨x1£©£¼f£¨x2£©
¹Êº¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý ¡­£¨9·Ö£©
£¨ III£©ÒòΪf£¨mx-x£©+f£¨x2-1£©£¾0£¬ËùÒÔf£¨mx-x£©£¾-f£¨x2-1£©¼´f£¨mx-x£©£¾f£¨1-x2£©
ÓÖÓÉ£¨ II£©º¯Êýy=f£¨x£©ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý
ËùÒÔmx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢
¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹ$m£¾-x+\frac{1}{x}+1$³ÉÁ¢ÇÒ$1-\frac{1}{x}¡Üm¡Ü1+\frac{1}{x}$³ÉÁ¢
µÃ£ºm£¾1ÇÒ-1¡Üm¡Ü2
¹ÊʵÊýmµÄËùÓпÉÄÜȡֵ{m|1£¼m¡Ü2}¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔµÄÓ¦Óã¬ÒÔ¼°º¯Êýµ¥µ÷ÐÔµÄÖ¤Ã÷£¬×ۺϿ¼²éº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èôsinx+sin£¨$\frac{¦Ð}{2}$+x£©=$\frac{\sqrt{2}}{3}$£¬Ôòcos£¨$\frac{¦Ð}{4}$-x£©µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{\sqrt{2}}{3}$B£®$\frac{\sqrt{2}}{3}$C£®-$\frac{1}{3}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª¡÷ABCµÄÖܳ¤Îª20£¬A=60¡ã£¬S¡÷ABC=10$\sqrt{3}$£¬Ôòa=£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Å¼º¯Êýy=f£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬-1]ÉÏÊÇÔöº¯Êý£¬ÔòÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®f£¨-1£©£¾f£¨$\frac{\sqrt{3}}{3}$£©B£®f£¨$\sqrt{2}$£©£¾f£¨-$\sqrt{2}$£©C£®f£¨4£©£¾f£¨3£©D£®f£¨-$\sqrt{2}$£©£¾f£¨$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÄÇôa£¾bÊÇsinA£¾sinBµÄ£¨¡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö²»±ØÒªB£®±ØÒª²»³ä·ÖC£®³ä·ÖÇÒ±ØÒªD£®ÎÞ¹Ø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÈçͼÖгÌÐòµÄÔËÐнá¹ûÊÇ£¨¡¡¡¡£©
A£®1B£®3C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô¼¯ºÏM={y|y=3x}£¬N={x|y=$\sqrt{1-3x}$}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®[0£¬$\frac{1}{3}$]B£®£¨0£¬$\frac{1}{3}$]C£®£¨0£¬+¡Þ£©D£®£¨-¡Þ£¬$\frac{1}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÇúÏßy=ex+aÓëy=£¨x-1£©2Ç¡ºÃ´æÔÚÁ½Ìõ¹«ÇÐÏߣ¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2ln2+3£©B£®£¨-¡Þ£¬2ln2-3£©C£®£¨2ln2-3£¬+¡Þ£©D£®£¨2ln2+3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÔ²C£ºx2+y2+8y+12=0£¬Ö±Ïßl£ºax+y+2a=0£®
£¨1£©µ±aΪºÎֵʱ£¬Ö±ÏßlÓëÔ²CÏàÇУ»
£¨2£©µ±Ö±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AB|=2$\sqrt{2}$ʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸